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CHAPTER XII.

LINZAR SPACES. N

7N\, ¢
oA\

A space will now be considered whose elements f,g, \} are some-

times called points or vectors, It is assumsd that ar;..,ép‘é}ation + is delined
A7)

&/
for every pair of elements of 8§ and that multiplic'afi\cm on the left by & com-

plex nmumber is defined for each slemont of S. ,'\\;
Definition 12.1. If f and g sre a.n;,r’.i,‘wo elements of a space S, then

N/

Y

S is onlled linear if f + g and af (a aleomplex number) are in $, and if

a) I +g=¢g+ f, ‘*}';’

b) (£ +g)+h=r (%),

.2

c + x = f hag dt\least one solution x in 8, {The uniqueness of
g 288 one in q

this aoluﬁi;d;"';’.s not postulated, but it will be proved in Thso-
rem 1\?.3’](.\)
d) a(E®)’= (ad)e,
20 Gale + g) = ot + a,
)
£) (a + b} = af + bf,
g) 1f = £,

Postulate A: The space § is linear

It will be assumed throughout that 3 setisfies Postulate A.

THEOREM 12.1. If f and g are any two elements of 8, then the equa-

fion g + x = £ has exactly one solution in S which will be denoted by £ - g,

f - £ is independsnt of f and will be denoted by O.
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Proof': By Definition 1z, le, the agiwtion £+ j SR BRI C OIS R AT j"

ardl £ + x = g hus a solation Saoorrort Bhe Prol of vhesos cgumbiong TUorat ooy

that (£ + x) +3 = {f +j) *x =0+ %, s0 Lhat, |-

. iy i second R 1V R A RSTION

s :‘f = g. dence j is = solution of Svery cqual lon o+ ‘ﬁ SR AT Y U B B
another such golation, then o+ f =N, :f + ¥ = 3 pofand by Detinition
N

e Ty oSN ol j
2 AN
sonfusion wiih Lo -'1:.1r'11'}:z:"’\;:r2r0 i
N’

. . . vl
12.1s, \j = W« Heace wvary eyuation - + j = f has !
which will be dencied by 0, sinca

™

1ever a risk. Let 2 be a solubion “+‘:( =gt v, ther

af £+ 2z =0, Ir

g+ x)*z={(g+y)+,, (g +2) +x =

&
(g = z) # AGYD o+ X =0+ y, and x = y,

Hence g + x = £ has g unigue zolution x which xw,{\lll be dencked by £ - g It

[0
P
N\
Tollows immediately that, feor Every euemem,u‘x, f-f =0,
Definition 12 220 0~ £ will he x.gmo‘:ed by =g
S RSN

It is obvious that

- (&),
I‘H_uO{E.‘m'I_Jj 2. For dny e-&atnm"t of 3, (0) = o, and for

O
nuster s, ald = 0, \\"

Proof: Ty ua-Luitioq 12.18, {107 = {1 + O = {1} + {0)f. Since
A</

tae squation {1)f ='\1)J. + % has
NG

(0l = Q. Araln\\m Definitian 12, le, uf = alf 0) = af + 20, and a0 = Q.

THT ﬁuﬂt 12,3, For any elen Lemont T oof 8 and any somplax number a,

(-a)f = ‘é\-ét’) af'y,

Proof: It follows from the preceding theorsm that 0= af + L—’\‘if)]

O=0 = fa+ (—a)]f = ur + (~a)f, and 0 = ap

the wmique selution x - 8, it follows that

=alf + ()] = af + a(-f).

The theorsm #ollows from the Tact thut 0 = ap 4+ g hag a uaigus solutiowd,

slinition 1%,3. I 2 complex number (&, &) is z8s0ciated with vach

air of’ eloments £ Emd of' § sual that
pair 2w Eunn
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&) (6] = (ef) (wkere 7 is the complx conjugate of =),
5) (f,0) =0 if £ # 0,
c) (af, g) = a(f,pg) {(where a is a complex mumber ), .

) (r5 £, €) = {0y, g) *+ (5, 8),

then {f,g) ie called the inner product of f and g,

It follows from part a of this definition that (F, ) 44 weal, so

that the sign of inequelity in pert b has scnse. If f = g = @) ﬁ:-en by part ¢
O

(0, 0) = a(0, 0) for any complex uurber a. EHenmee (O, O;, (5 Conversely,

if (£, £) = 0, then £ must be ¢ Lo be congistent valth\gs,ri b. Hence (f,f) =
when and ondy when £ = Q. )
.\\,}
THEOREM 12.4. If {f, g) is the 1T|ne,m Product of f =and g, then

(6, af ) = a(g, £') and (g, £,+ £,) = (g, £ )“& (g, £},
- 1 £ ol 4

Proof: By Definition 12.3, ﬂ?g: af ) = (af, g) = a(f, &) = a{f, &) =

;(E.:“?T' Again, (g, f + £, ) {f +‘fn; E) = {lj’ g) + ’E’ é;} =

= B0 @8 - (e )€ \cg, £,).

Pogtulate E: An;lpner‘ preduct is defined over lhke lincear space 3.

Y3
It wiil ke i’ﬁf?ufned throughout that § sutisfies Fostulate B,

xl

Def.dzlt\bn, 14 4. Tne pesitive squere root V(f, I') is ealled the
- £ Bt il

length of f andé;s dgencted by il .
—— AN

\”i%:’l's obvicus that Hf” = 0 whonr and only when £ = 0 and that |laf]]
=tal < el

THECKEM 12.8. {Schwarz's Lenma. ) I sod g ure any two slements of

8, then (¢, g)] Szl -

Procf: Since 0 5 (f-g, f-g) = (£,£) + (g,e) - (£,u) = (g,£) =
=lle 125 g 1% 2®ee,g), it follows that ®(r,e) 5 ale % 2lell?, 10 ¢
and g ure replaced by af and i—g (where & > 0), the left side :f this ine

. 8 © 2 1 &
eguelity is unchanged, whilc the right side becomes = ”f ” + —— ”g ”
Y g 2 5 P
&
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The g.1.b. of this sxpression being flell . lell , sv follows tht Rir, p) =

§“f“ . “g” « If £ is replaced by 6f {where ‘9| = 1), the Pt side i this

last inequality becemes Rg(f‘, g), while the Fight side romuins unshianged,

Since the maximun of Ro(r, ) ig (£, )]

» therefore f(f‘, g)l i”f“ - ”g”

iy

If in thy relation (£ - & £ - g) =0 th: sign of equality is to held,

O\
< .
It st be the case that £ = g, Ip the relation Rz, g) = [lgfN-llgll s o
W
1 Qx -
be an equality, then £ = @ or £ =0o0r af = o &» Where a has\tHe pogitive
N/

2 \
valus which makes % el & & ‘—1'2- ”5”2 & minimun, that(3§, t - g, S >0,
2 ¢

# ~\”
If the equality is to hold in the theoren itselr, i‘b}uust be the case that
F=0o0rgs=200rg =xa &, whare @ has the va],&g;which maximizes R6(r, g,

7

» T =f8g, A complax and # o. Henca’,} ﬁecassary condition thut the

\ W

equality hold in the preceding theor an

is that £ =
p Ao, T

00rg=00rf=ﬁg,

is obvious that this condition is also sufficient,
;*_}@onw_lz.s. If f and g are sny two elemsnts op 3, then

o\,
= { }
“f + g” = ”f“ + ” g” . g '\‘..

Proof: By Theoramylz.s, (£ + ¢,

Tre) = lel® e ligl? s amie, o) <
AR EAREY TS Ny

The theorep follows upon teking square roots.
"’\s.
In this ’&Qeram the equality holds if and onl,

that is, as theldiscussio
N\

v L R(2, g) =Mell il gl
n following Theorem 12,5 ghe

wed, if and only if £ = Q
or g = @ 5'1}‘;:{‘"=O(g, A > o,

Definition 12,5, If £ and g are Any two elemsnts of 8, then the
.t T oand e . LT EUemesnts of =

distance between them is taken to be |1 - gll and is denoted by D(f, g).
THEOREM 12,7
R de.T.

D(f, £) = o, D(r, 8} > o when £ £ », D(s, g)
B2, &) + D(g, h) 2 (e, n), pre « h, g + h)
= lal D(e, o).

= D(g, r),
= D{f, g}, andg D{af, ag) =

The proofs of all parts of the theoren are apparent,
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By Theorem 12.7 the distance D(f, g) possesses all the properties
which may be reasonably expected of a distance in a linear space, (For ex-
ample, see F. Hausdorff, "Mengenlehre", W. de Gruyter and Co., Berlin and
Leipzig, 1827, definitions on ﬁp.94~9?. For all topological questions, see
the discussione, ibid., pp.94-138.) Hence D(f, g) can be used %o defire a

topology in 82 N\

Definivion 12.5: By 1im f = f it is meant that 1ip(Hht - £il = o.
- TL=00 n-segh

& function F(f) is continuous at f if the condition lim,f.";

T = e & I

el e o]

2 ~\.'
condition lim F(fn) = F(f}. (The definition domain/o® F(f) must be conbained
—500 v’

= P implies the

in 8, but its range of valuss mey be containegt:ﬁ“‘s or it may consist of com-
ple x numbers. This definition is of coursg‘{a.;gi?alen'b to the statement that
for every & > o there exists a § = G(f‘gé) ;- 0 such that whenever ”g -rll < 8
then IF(g) ~ 7(£)]| 2 € or lF(g) -"E-‘(f)vj e .} The generalization of the
notion of continuity Lo two OI‘.“I’!I‘Q‘;B variablss {of which some may run over
complex numbers) is appa.rer}'b\’\w

Let C be a sub.s‘eiixﬁf“ 3. f is a condensation point of ¢ if there exists

#

a sequence f., £, welb of elements of C such that 1im © = f. {This is of
1 2480} n
,\\w‘ -0
&
course equivalemt'to the possibility of finding for each £ an elsment g £ ¢

N
such that\w}{ g;- el <« .)

C is clossd if it contains all its condensation points., C is dense
in I if every point of D is a peint of C or a condensabion point of C. C is
open if, for each £ £ (, thers exists an § = E{f) > o such that the entirs
gphers ”g - f” < £ is contained in C. (This means of course that the
comploment of C is closed. 8ee Definition 1.8 et seq.)

Thus a topology is determined in 5 by means of the distance D(f, g)

and all topological problsms relating to 8 can be discussed in the usual
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terminelogy.

THEOREM 1 .8: The functions £ + g, af, £, £ - g (£, g), el ana
Ite - g” are continuous in £, g, a.pd. a,
Proofz The relations _
<
(e +g) - Ce v g ) = (e - fol+le-~gdll =lie-+

llag - 8.foll = Mlfag (o - a))e + (2 - 2)) = a2 )i

I+ he-ef ,

A ©

Q.
Flagh e e e b+ le | <Ja-al «]a -ahe e -2 ),
I, ) = (g )] = 1 (r -2 ), g+ (g - 8,0) - (£\g )| =
R R e N T s A N Py NI gl
show that £ + g, af, and (f, g) are oontinuous. 3 a = -1, then af becomes -f;
if g is replaced by -g, then £ + g becams.f‘::-‘\g‘,: if g~ £, then Vi(r,g) = |2,
if £ is replaced by f - g, thea || £l bqt;am;s e gll.

The theory or speces § }Qs been based so far on the notions of £ + g

8 )
end af (linearity) and {r, g\bfimmr product), /£l ang "distance" were de-

by means of them, “Blli:t;‘topological literature is much more Familiar with the
following set of\'ﬁiiﬁitiva notions: f + g and af (linearity), ang el
(metricity’}'::\’.(’éf‘. Hausdorff, loc. cit.) Then the fundamental properties of
el (membibnod after Definition 12.4 and in Theomem 12.5) are %o be postu-
lated, while (f, g) will bedefined in terms of the metrig and its properties
proved. But to do this, edditional postulates concerning ”f” are needed,

Thiz situstion will now be discussed in detail,

Definition 12.7: 4 linear space 8 is called metric if ap absolute

. value “i‘” i1s defined in § such that

a) llrl >o_3'.£f;10,
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by Marll =Tal - {l2l

o) e+ gll SHolletlel .
{Then of zourse D(I', g) = }rf - gl detines a distunce for which Theorem 12.7
is walid.)

Postulsate Bl: The Llinear space § is matric,

It will be aszumsd for the momsnt that 3 satisfies Postulaﬁéﬁ A and

B, but not necessarily B. \'\\
e + gl llr - gl] 4
TLEOREM 12.9: If C(f, g) = %——— g2l 17 & r-q {where £ and g
AL 2 T s ¢ a0
ars in 8 and not both 0), and if « = g.l.b. of C(r, @}\ahd fi= liab, of
-

C(P, g) for all £ and g in 8, thon 5 = & = 1 A % and A= 1,
for ail f and g in 8, thon A

o, . nfa - ] = = 4”' * 4” g = 1..___.
Proof's First, O(2 + g, £ - g) = 2’ _U ’2 Ty

1
Hesoce A C{f, g) ever sssums s value &r‘lt also assumes the wvalue — . There-
™ 8

||;{«

fore oA 3= 1 and, since * 5 i, c:(l:?:'l

J 2

f - Secoad, ”f + guf e - 3”2 =

L

A

el +JJg” )“ S gl +’IgJL ), so that C(f, g) = 2. Thus f3 S 2, and
since o fi= 1, & z %; ths tbmplmtos the proof.

>

The follawing L&,&Vﬂbﬂ show that o, /3 may assume all values com-

,\,,. R
patible with Theorer;r'\}iz.Q; that is, toat 3 may assume all values z i, =2,

#

Lat 8 bs the real Ehulldoan spuce with rectangular OOOleﬂ&teu. I £ is ths

with caé;ﬁinates 2ys %o, 1et‘fflfu = (Ix1]P X I )p . Waere p is some

L

point

I

Fized number 4 1. In case p = w, we may intsrpret ”f ” Max ({}r f ,F:{?‘ )_.

W

fi= {—50 is obviously a confinuous funstion of p. For p = 1 and p = o tho

Iy

choises £ = (1, 0), g = (0, 1) resp. £ = (2, 1), g = {1, -1) prove that ﬁp=

For p = 2, the following Theorem 12.10 {or an easy direct verificstion) will

A

give {}p = 1, Thus all valuss z 1, £ are agsumed by the/S.

Postulate E c{f, g) =

THEOREM 32 ,10: In a linear metric space 3, Postulate BZ iz the nocesa
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sary and sufficient condition thet an inner product (£, g) satisfying Posty-

late B may be def'ined in such a way that ”f” = V (£, £). I (£, ) Lan

All this remains true if the condition b) in Definition 12.7 is

replased by the weaker condition

laell =l el] . S

a
2\

bt) lin fagfl = 0 ana
B>

=%

\S
Proof: If there exists an inmer product (£, g). subh that

”f” = V(f, f), then "'( L

(£ +g, £ +g)+ (£ -g f-glR(r, £)+ 2(g, g),
so that e+ gll % M2 = 2112 2 2lis ]2, 2!!5';{1‘2: and O(f, g) = 1. Thus

X 3

Postulate B, is necessary. Again
(t 58,24 8) - (£~ g, &% 6) - 2(s, ) + 2(g, ©) = 1 4(s, g).
Considering Y (£, g) = - Ri(e, g)f;:—:ﬁ:(i_{', g}, we have
H(r, g) *%(fff +gll® s - gll?),
£, SR(e, &) ~ 1R (12, g).

Hence {f, g} if it a{tiifs" and is such that lefl = V(E, £), is uniquely de-

{*)

termined by ” :E'”.‘."’;.\fobserve that so far Portulate BJ.’ that is Definition i2.7,

has not been uSed at all.)

It::;;\eﬁaina to provs the sufficiency of Postulate Bz. Buppose the
3

space $ satisfies Postulates 4, By and B,, but with b') instead of b) in De~

finition 12.7. Défine(f, g) by the equations (*). It must be shown that

(f, g) satisfies the conditions in Definition 12.3, and that fl¢f] = VI(f, £).
Gonditien b') implies |loll = o0, and so cfr, g) = 1 gives for £ = 0,

e = 1l-gll . This tmpites R0, &) = o.

Replace now in the first part of (%) £ vy £

+ »
1" i‘z, and add, Using

O(f, &) = 1, that 1o Hk + hll% {lx - nli2 « 2115 |% 2lInll?, this gives
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Rt v £, 8) + R - £y, 8) =

= %Hfflﬂ” £+ gll 2—]ffl+ £, g”2+“f1— £+ g”z—”fl- £,- g”2} =

= i—i(” £rg e+t ”2+”f1+ ¢ - ngz) - (le- e f2“2+”f1— - £, [1%y; =

2

- %{(2”1’1+ g 12s 2”f2”2)_-— (2”:*1- gl 2fif2”2)3 -

1 2 2 o
= —2»i“f‘l+ g” - ”f‘l- g Il 1= Z’K(fl, z). ©
N\
Put £ = T, then there results R(2f , g) = 2R(f,, e). \Her:ce we have

f1+ £
Riey+ £, ) + R(E- 1, &) = R(2), &), or, replackig £), £, by —5—E,

fi- 1 v’ A
—J—z-——-a : ’R_(fl, gl + Rr £y g) = R( £+ £ 2} N{w replace £, f, by if,, if

and usc the second part of (*}: \‘
&) (£ ) + (2 QR0 250 8).

)
N3

Let us now discuss equatlon‘ NS

31) (Et‘ g) = alf, g).
\\
Denote by § the set of alX feomplex)a for which it hoMs. (% ) implies that a,
A\
b € § imply a © b € Se\Ubviously 1 € 8; so all integers 0, X1, % 2, ... be-

7\
long to 5, A4s a., \h"é 5, b % 0 obviously imply % € 8, all rational numbsers

™

belong to S.:.. \
By\Defl}.‘ll‘t].OD 12.7, ¢, “h” - ” k” s “ h - k” (replace £, g by
b -k, k). Interchanging h, k, we get [kl = Hull S1n -l ; thus

Dt -l | S 1 -kl . Boncolllar « gl = Npe+ghl S -piell |

1

end if = -» 3 , this converges to 0 by b'). Bo liag + gll is 2 continuous
function of o& ; similarly s - gl . Therefore R(A 1, g) and (1, g)
are by (*) also continucus functions of & . Thus 5 is & closed set. As the
real o 's are limits of mtional K's, all real o's belong to 8.

¥ow 1) holds for & = i, as follows directly from {*#). Hence i e s,
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and if o&l, o&z ars real, Ry = ickz = dl+ -E:,.-:L € 8. Thus all complex o\'s
belong te S; that is 1) always holds.

Weo have verified the conditions c), 4} of Definition 12,3, a) mesn
(e, 8) = R(g £), R(if, g) = - R(ig, £). The first relation follows di-
rectly from (*). As for the second, observe that iell = ”I‘” and (*) give

RGE 18) = R, 0)s monoo B3t 6) = R(-t, 16) = - Rir, 160" R(ag, 1),

O\
It remains to prove b) and Il £ll = V{7, £) , but, ‘qh\e"former follows
from the latter. This means A (s, £) = “f‘”2 RAif, f’)"t 0 Wow a), ¢)

wmply (F, & g) = K(z, g), and so (xf,or) =f°‘12<r?;ﬂ. Therefore,
(2t, 2£) = a(z, £), ((1+ 4)e, (1 + 1)¢) = (L), (-1« 5)e) = 2z, 1),

proving our statemsnts. S\

X 3
NN

Thus the spaces satisfying Poqt;ui“ates A and B are ijdentical with

those sabisfying 4, B, and By, thetod§), with those linear motric spaces in

which the invariants o and f3 d'g:f‘iﬁ’ad in Theorem 12.9 assume their extreme

. ~
values X = 3 = 1. Each o{{l’:hé votions (£, g) and !l £ll can be used to derive
the other,

It 3= now c@sirabla to resume the investigation of the mropertiss of
spaces § sa‘tlsfyigg Postulates 4 and B,

Defznztlon 12.8: iy and g are any two slements of 8, they are

called oghagana tlg it (£, g)=0; ¢ 1s called normlized ir 1] ¢lf

A set A of elements ©

» & +.. in 8 is callad orthogonsl ir each pair of distinet

alemants of A Are orthogonal; 4 is callsd normalized 1f gach element of A is

normalirzed. I A is orthogenal and normalized
—— —— s D ZTRe i 2ed

R 51_1_5 called ortho-normal (E.E-);

_i_.t: A E’,P_‘E" it_i"f_ called complete Or maximal in § if it ia not & proper part

of any other ¢.n. set in §,

It is obvious that if A is o.n., then each subgset of 24 is mlso .0,
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If £ and g are any two elements of an o.n. set A, then {f, g) = {é ig g ; g’
Jonversely, if A is such a set that any two of its vlsments satisfy this con-
dition, then A is o.n. Thus if A consists of a finite or infinite sequence

Pie Fps wo- of distinct elsments, The o.n. character of A is equivalent to the

condition (kf ’ i«Pn) = Omn’ whare Sm is the wellsknovm Krouocker symbol

§ = Jdtim=mn, oy 21, the lett 11 ahgays b a

. 0 if m £ n, L& the sequs s lettors “, 4, ... wi alqays be use
. O\

to denote the elesments of an o.n. set. .'\\

\/

That an o.z. set A is complete in 8 means that ;thé;‘ﬁ_ exists no ele-
nent. Y £ § such that the set consisting of A end ],S!‘\)\Il, that is, there
gxists po normalized element P € 8§ such that k{’_f_ k’ But if f ;! J aad £ L A,
whore £ &€ 3, then ¢ = W I is normalized and. c}thovo'lal to A. Thus it fol-

lows that the complateness in 8 of an o.n.».'get 4 in 3 is equivalent to the fact

that the only elsment in 8 orthogonal oA is £ =

\ %
.. i3 &n {fn. set of elements and if g = 2
~ in1

e

oo 2
then it is obvious that x. & \\g\ L-F Yo If 'Z fi is defined to be lim Z f
':l { i=1 nex00 i=1

o, P -

N/ o0
{provided tlmt this llmit\e.{lsts) and if g = > X, ‘P +thsn x5 (g, \Pj)
xt\" l_‘l

& o)
since (p, q) is co;\{s;izfuous and since %= lim (Zl X P, K~{:’ )= (lei Py k{?j).
N\ n—= i= i=

TdEGR}:IM 12,11 If Yo, e, ‘-P is a finite o.n. st in 8 and if g € §,
A e —————— —_ —_

| T
4
then V =[lg = f‘:_l x; ¢/l s mininized when x,= (g,¥;); if V. is the mini-
ven 0 S8, = g2 5] 2 st llgll? 2
mun value, then 0 Sy = Ilg !l (g, 9 01°, 50 tmas flgil” =

n
. 2. This last relation is known as Bessel's inequality.
€Ty

. jid] 2 n n
Prooy: 0= llg - in "Fin = (g - in"oi’ £- 2 Xp) =

i=1 i=1 i=1

() - (&3 o) - (3 s RECREOIETT 3
)

i
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n fal
= (g, 8) - 2 x. (e, $.) - 2 x (9., g)+ Z (x; 2., X kpj)—
i=1 i=1 $.3-1

< (e &) - 2RI>_ x (5,%)] + 2 =% -
i=1 i=

Zn[lxiJ ~ 2Rix (5,7%]) + 1 (g, \Pi}n'zl}ﬂ‘ Hell® - .Zli(g, SR
i=l =

-3 Fxp= e e OI%) « Hlgli® 'izl e I % .
il m

The theorem follows from the form of this last expressiéf{'."

Qoroliary 1. If A is any o.n. set im §, ‘Eh}'l Bessel's ine uel ity
—_ Zhcque ix

holds for any finite subset of 4. If 4 is an @J_nlte sequence ., Por

LI ]

then the series Z ](g, *-fi)i is convergent }nd = g”z .
i=1

The statemente of the followin’g Corollaries 2, 3, and 4 are of in-

terest only if A is non—-countable. N

CGorollary 2. If A is ﬂ 2.2+ 26t in 8, then (g, ) = o for every o
in A except for a countableset and Z J(g,tf)f
TTpEa

convergent and = i g “ 2 (Thls

not onlx has Bense but is

lust relation, or that one in Corellary 1, is

again Beszel's ing&ua :Lty- if it is actually an equality it is called Parseval's

equation, ) O\

T,

Co'f;bllar 8: If A is . 8ot
: Y 8 BNy O.n. gst in 8, and:fgl,

Bps s. i amy

sﬁ_nAare gi-

Bequence of elements of 8, then all bl.rt & countable Bet of !
R el oottt od

multansousl; orthogonal to all the
—— 2 7PME Y orthogonal g's.

Proofn: Corollary 1 ig apparent. Tt follows from Besselts inequa-

11ty that the number k of “Y's such that (g,

2
, I = & is not greeter than
—“f”— thus k iz ring
H inite,
)

If € is given the values 1, 1/2, 1/3, «v., the

corresponding sets of P's guch that !'(g,‘-ﬁ)[z > & meke up a countable set and

. 2
cowprise all “'s such that ](E;,"f’” > 0. This proves Corollary 2, Corollary
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3 foliows at once.

Definition 12.9. A set T is called separable if there exists a

courtable et of its elements which is dense in T,

Corcllary 4. If A is any o.r. set in S, end if T is a separatle

part of 3, then all the elements of A sxcept for a countable subset are simul~

tanecualy orthogonal to all the elements of T, I\,

Proof: Let f,, f,, ... be & sequence 2. of elements .Qf\’I‘ dense in T,

2!
Let g be any element of T and let ifg} be & subsequence of § Z such that

1 \
lim £ = g. Except for a countable set of 's iu 4, ‘;P, £, ) 0 for all i
D=0 51 o~
and for all ¥ in 4. Hence, with at least the same excep‘tlans (v, f_ }=0

) &1
for 811 1 and (by continuity) (¢, g} = 0. \‘

Corellary 5: If A is any o.m. set in 8, and if § itself is seperable,

then 4 is countable. &Y

ad
3

Proof': If A were not cgﬁnta;ble it would contaln elements <« which

22\
would bte orthogonal %o the w];%‘ev}of 5. BSuchk an element ¥ would therefore be

orthogonal to itself. Henﬁéf ¥ = 0, This contradicts the normalized churacter
\ </
of A. :\ 4
A& :
THEORLM'@ 12: If § is sepsreble, any subspace S' of 8 is also se-

‘o

parabla, N

%\o}o“i‘: Suppose the segquence > fl’ fg, «.s iz in 5 and densze in 3.
Corresponding to each pair of positive integers m and r let an eloment &n of 8!
be selected such that Dig . fn) <-3'E (providing, of course, that there existe
such an element}. Then the elements By BT° dense in 5'. To show this, let g
bs an element of 8'., Then there exists a subseguence fil, fiz, ena of Z_ such

that 1im D{g, £. ) = 0. For sufficiently large n, D(g, £, 3 -:i , and then
=00 n n

elemsents h & §' with D(h, f‘i ) <r—1ﬂ- exist; for examplc, h = g, Thus B is de-
n *n
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1 _ , , 2
fired D{g, f‘ )] {— D(gml . fi ) <5 » 8nd therefore I(g, B } < = ly
11 1 I

Theorem 12.8,

Des 1rx1t1cm la 10: A fin*te set of elerments I‘l, e, fu of 8 is 8 called

1iz arly 1ndepender‘t if the condition Z xlf =0 is sai setisfied only hy the set

i=31 T

of values x S eae =X =,
— i n

It is easily seen that ever_/ finite o.n. set Fis eee, \Pr;\is-: linearly

independent, for the condition Z x, Lp = 0 implies {by th wlrark Fofore
i= l . S\l

Theorem 12 «11} that x = (0,%.) = (. A7

J J ( "g

THEGR b Iz.13, i fl’ “va, f‘n are llrearly #uaepc,“cbn't Elenents of

8 space B, then there existe an o.n. set of el&_l_'rx:“_r‘b' S
\.
Proof: 8ince f ;4 C it can be wr: ttbl’\f\ =

> e kPrl in 8.

8, tfl, where ty #0 and

” “FIH = 1. 5Since fl and f are llneurl}, ;gpqe;—er;dear:t, the differenge

»"

T~ (f2, LPl){ij is different frem zpr‘)’:, s crthogonel to @ 1+ and can be

wWritten as &g o, where &, 7o, ”kf"'f = 1. Ty is ort ﬁo&,onal to . . Bince

fl’ fE’ and f5 are lineurly %nu}gpendent the differerce f - Z(f

O

o, is orthogorual to W and
LPS, where a ;(D 1|I|\C10
'\

z4 L‘Fi) l\Fj_ 13

differernt from Zero o+ 8nd can ke Written ag

LPS is orthogonal +q kPl and Lpz. Tris

pProcess may Le caﬁ‘iaued until the set Fir ene, ¥, i@ obtaireg.

A SE'HI:..{’IJCP fl gr e of elenents of g is called fundanerta] if

lir D f\$~f ) = o (that is, if lim (f . ¢ ) =
mon T Tn
m, =00 m,Tes00

Definit_:}_gy__l_%__._l_]_._._ A sSpace 8 is ealled complete if Corresponding to

gach _fi}ﬂd;ainenta.l Seguence i‘l, fz, se. oOF ele_r;e_r.t_g of 8 there existe an elcment

£ of § such that Iim L(E, £ ) = 0 (that 1S, such thet 1im ¢ - £,
— 1 n T bl

- 00
The follewing alternativeg hoidfor 5 fpace 8: 1) if g171 finite sets

2

of elements in g particular set 2_
—=n?

0 of linearly independent, elements of § gre Torned, where n is the number

the lesst uppsr bourd N of n may be fi-
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nite or infinite. By Theorem 12,12 and the remark following Definition 12.10
this alternative may be replaced by the alternative that the least upper bound
N of n with respect to all finite o.n. sets of elements of § is finite or in-
firite., 2) 8 may or may not be separsble, 3) 8 may or may mot be complete.

THEOREM 12.14: If 8 is such that W (of the previcus puragraph) is

finite, then S can be represented by the complex N-dimensional Eusdidean

N
#A)

spmce; hence 8 is separable and complete. K

Ny
Proef: There exists an o.n. sst UPl’ vees Py in §a.}‘. Tt is apparent

T 2
that any element f of § can be represented ag f = % Jgi'\\pi in one and only
AN\
one way, I EN is the complex N-dimersional Ellcl]’\dean space, then f caen be
N
represented in F by the poirt (xl, iy xN). ~8iftilerly, any other elemert
g of 3 would be represented by the point ’(yl';' aens yH}. Tt fellcws that
(f + g)~ (xl-f- Yys nees Xgt yN) and a‘i";?%"(axl, vens axN}, so that  + g and

N 3

af' sre in EN. Conversely, since $N\is linear, there is an element of 3 corrus-

~& H N
ponding to each point of By {‘ux’themore, £, g) = (2 X ¥ PARIRTIS I
. N i=1 g=1 J
:igl xi§i, go that 8 is .i‘s\'oino}-phic with E}q

If 3 is such €het N is finite, then an o.n, set kPl, ey q?k is com-
"’\§¢

plete when and o;ﬂ}\n;\rhsn k = N.

ol
&

Defﬁ;’;\r:i“i‘;.’ibn 12,12, A space 8 is sald to be extended to & space T if T

) 3

is obfained Yrom S by the addition of elements to 5, and if £ + g, af, and

(r, g) are defined over T in gsuch a manner that, for slements of 8, the defi-

niticne of these notions in § and T agrac. (All these spaces are assumed to
satisfy Postulates & and B.)

THEOREM 12,15, Any space 8 can be extended Ecif; comple;t_e_ space &

in essentially only one way such that 8 is dense¢ in 4. & end 7" have the

sana value of N and the sams character w_'_tt_k_l regard to separ&bilé_tl.
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Froof: Let F = {f } be a fundamental gequence of eolements of §, F
i
iz said to be equivalent to G, F ~ &, if 1lim D(fn, gn) = 0. It follows that
D=0
P~F; if P~ G, G~F; if F ~ ¢ and G~H, F~ H, F will now be regarded as
an element of a space T, and all fundamental Boequences equivalent to F will
be regarded as the same element of 7, Ir {fi} and [gii aro fundamental go-
O\
quences, then {f‘i+ g;} and {.afi] ars also anid the operations F 4G and af in
O\

/JLare dafined to he{fi+ gii and{e.fil; {F, ¢) is taken to LN Tim (i‘n, gn).

. N—wog
That this limit exists follows from the fact that’(fn,” g’n) - (fm, gm)l =

=l(z_+ (F- 2 ) g+ (g~ g.)) - (£ . gmﬂg e - ffﬁ;f}{” gmH * ”fml £ &l *

+Hle -~ p - ” - im  [{f , = (F N 1= sinee [| || an { fl
2" Sl Ba Ggll o m}n-a-cn o &) .("ﬁ{' P/l 7 0ot fall e &
are bounded (insomuch as ”fm“ = ”fn+ (I’m-.f“ﬁ')n‘ SHrHH + ”i‘m— e ]l §”nt[ + €

for a sulficiently great but fixed n a{l'de".&il m>n)}, It is apparent that se~

quencss egquivalent to {fij and igi}‘ may be used in the definitions of ¥ + G,

aF, end (F, &) without doing mc:-{é to the first twe of these entities than re-

placing them by equivalent ix{%izties and without changing the lagt entity at all

Hence the zame operatiqnsi:éccur in 8 and J", If F
AN

Fg =18 By «0.], E’:\}BQFf= Fg when and only when £ = g. Hence r, F, and all

Fundamenta] segt\x%{ca's equivalent 4o F. may be identified, and if there exists

= I, £, L..7 and

an element :E‘,{}df-r-espondmg to a piven &lement F, operaticns on £ and P have

the same\ignificanca. et 4 be the space of al1 fundamenta] seguences ari-

sing from 8. Then T has the properties of § in that it is linear with an

innsy broduct, as ai1 mrts of Pefinitions 12.1 and 12.3 can te oa8ily veri-

fied, (In particular, the eondition (F, F) = g implies that F ~ 0, and thus

in the present torminelegy 7 = C.) Finally, g is igsomorphic to, and in the

present terminology, even identical with g part of 7, the set of all Fi"

By Theorenm 12.14, if ¥ is finite for 8, § is complets and therefore
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8= 7. If N is infinite for S, it is infinite for 7 . Hemce S ang ‘¢ nave
ths same character with regard to the first of the alternatives mentioned be-
Pors Theorsm 12,14 and they have the same walue of K.

If ¥ belongs to /fr’, then F is & fundamental sequence {fif s

lim e - £ Il = 0, so that lim ( lim e - f‘ Ay = 0. Now D{f., F) =
i, J-»00 o im0 Jemoo 1 1
: o
= limei— £ il . Therefore 1lim D(f., F) = 0, that is, 1lim £ 8 F.  Hence
Jammon d 1=30 * 1-90)’\ \*
3 1s dense in ﬁb AN

\o/
It guis separable, then its subsst S is also; J.fB is separable, ,34.
is aiso, since 8§ is dense in ’3”. Hence § and @Ph’sw%)'\{:.he same characher
with regard to the sccond of the above mentloned \Qlterna‘slves.
/J"ls always complste, for let Fl’,‘l??’ +++ be any fundamental se-

gquance in ﬁﬁ « 8dince 5 is denss in /Jﬁ,,,thara exists an elenent fn ef 5 such

, X

that D(Fn_ f )« i The scquence §f 3 is Fundemental since ”f‘ - f‘nﬂ—
={l(e,-7 )+ (F-F )+ (F —i‘r\}ﬂ 51—1 -;— IIF - F, || Hence {£ } is an ele-
memt F of /d“'such that 1ime fo’ , F} = 0, so that lim D(F_, F) = O, This
T1—3e00 . LL=—00

%

completes the proof exc‘ep’j;“for the uniqueness of 7.
O ,
Buppoga the\’*:e\ were & second extension q“ af' 3 such that S is densz in
i
T, 1 EL_ ;s\x fmdamen*al sequence in §, and therefore an element of 7 ,
\ )

then {7 ] ke h limit ¥ in 77, Likewise the fundamentsl sequence L.} vas

) 3
g limit Y in @”. But ¥ and Y cannot be equal unless {fi— gi} CONVarges
to O, that is, unless{ f,} and { g} sre squivalent. Hence distinet slements

i
7 ;

of 9"‘ correspond to distinet elements of , and conversaly, disiinct ele-

/4 i, .
ments of @Lcorrespond to distinct elements of /f'. Since /JL is complete, this

ey . .

mapping covers all of @" . Since § is dense in » this mapping provides anm

’
imags in ﬁhfor every element of ﬁw « Hence the mapping is one-to-one betwssen

s
G and 47, Tt is obviocus that the operations F + &, aF, and (F, G) have the
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¢
significance in fr a8 in ’aA, 80 that the mapping is isomorphic,
It is now possible to consider the following postulatey coneeroing

the space §:
4. 8 is linear. {Definition 12.1.)

B. an inner product is defined over g, {befinition 12.3.)
CI' N is finite, QO
(Alternative 1 after Definition 12 11 )
« ¥ is infinite. R,
\/

L 3
.

-} (Definition 1z.9, alternatimeNs’urt oy Definition 12.11.
¢*{

AN

2
21- 3 is separable.
D,. 8 is not separable,

E .« 8 is complate,

=1 Ty e ?
{(Zefinition l2.11, gﬁ%ﬁrnative S after Definition 12.11
E,v S 1s not complete. §\“
There are; a priori, eight posabble combinations of the postulales 4,
B, CP, DO_, Elp, oyt=1, 2} for g, Q But by Theorsm 12,14, €, implies D, and

El’ end that § is the complex N dimen51onal Euclidean gPace.  Thus only the

four combinationg of 02 Wifh"ﬁ\ and En.lewaln for consideration, By Theorem

°e 3 by a complete spyee Zr'without altering any

of the other ccndltioﬁs Hence It may be assumed that E1 holds,

A\
Thus, bes¢des the combination A, B, €, (anq D, E ), the only comni-
\\
+
nations to be bonﬂlaeved are 4, B, 02, Dl or DE’ and El. These lattar CHSSE

will be the.maln soncern of thage investigations. In any event, it will be

assumad tnroughout the =e

THOL G +
THEOR @ 12.16: 17 ‘fl,‘Fz, »+» 18 un 2-B. 58t in g, tHen & necessary

aud\suif%h}Eﬂb condlolon tbat Ezj *fi be GOﬂJﬂr&Bnt is fhat EE: fa fz be
convergent, =1

Praof: Ths 4 iti i E
he condition is necesoqry, for ip a, .y,
i

is convergent,
i=31 1
then  1im “Z oy, Z e } = 0, and therefope

My Nmryy (=7

m>=n



XI11I. LINEAR SPACES 21

g hal 2
= lim Ig &, k,oi- Zaikpi“ = lim ” Z ay kp “
m,n-»x 1=l i=1 T, 0 i=nt]
m = n T >n
m o m 2 @0 2
jim (-Z ait{i, Z aj Hoj) = 1im _Z_ Iai' = 0. Hence }_: Jai‘
T, L 0G i=mn+] J=n+l m,n-30 1=n+l i=1
m = 1l o=

is eonvergent. The condition iz sufficient by & reversal of the argument in
view of the fact that § is complste and that 1im  ecan be regLaoed in this
) ) 0, 13m0 ¢ { \
cags by lim . m e '..\ “
I, TL= \J/

Corollary: If A iz any o seh In 8, then ,’an, ‘P)‘P iz co werpent,
T 8 D g T 2EM A H_"Z&ﬂ ; -

wnsre £ ois any element of 8.

Proof: This follows imme:iiately From {{)f%llar‘y £ of Theorsm 12,11

N\

v

‘,.

together with Theorem 12.16. )

TEE0REYE 12.17: If A dis any o, :9(1 ir 8, if f is wny elemeul in 3,

mnd if g is definad by the conditi omf'* E (f,p)p+ g, than g | A.
T T T AN Y& A -7
Prool’:s I A is cou:-zta:t»lﬁ, then all the =lements of A may be included

in “he summation and, feor E%.I}yx\LPj of A, (T, ‘*P]-J (Z (f, ‘10 )‘P ‘f’ )+ (g, ".P )=

N, - i=1
3 3
= (£, Lf’ﬁ.) + (g, l{’,) and:‘(%,’ L,o.) = 0. I 4 is not countable, consider a given
o —
¥ £ A, It is sui‘&{*&ent to extead the swmation 2 over {thoss Y E A for
o ‘FE &
wihich (£, ¥) ;-(0‘~9,r1d in addiftion, ¥ (which may or may not be such that
(£, 99 # O‘K\ :Al]. those Y form a sequshee, and for them the condition
(z,¢) = 0 obtains; in particular, (g,¥°) = 0. This completes the proof since
Lf’ WhE arbitrary.

Delinition 12.13: ILet M be a subset of 8. If £ + g £ M whensver

£ Mand gg M, and if af & M whenever f £ M, then M is called -]h_jfll_caﬁai.
It 1s clear that M is complete in the sense of Definition 12.11 if
and only if it is closeéd in the topological sense (Definition 12.6) inasmuch

25 3 is complete,
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It is obvious that the product of eny set of linear (closed) sets ig
linear (closed). 4 linear set in § is usually called a linear manifold (1.m.)
in 8.

If X {s any set in 8, there exists & lme ¥ in § contuining X (for
example, 8 itself). Ths common part of all l.m.'s containing X is the
Pemallest™ 1.m. containing X; it will be called ™the" 1.m, determiped by X ard

will be denoted by 1X]. The symbol [X] is defined similarly wlth respact to
N
closed linear manifelds (e, lam. ). In general, {X, ¥, cers £, wau is tho

g
N

1.,m. determined by the sum of LYy oo, £y 8y vne, ang;lx,'v veey £y o8, id]

Y,
is the c.l.m. defined analogously. Tt is obvious thﬁt}[x]::{x§:>x
If X is  any set in 8, then X} and [ggzgﬁi be constructed dirsctly
in the following manner, as is easily verifi?hE}EX} is the set of all elemsnts
1 \
> a.f,, where f.e Xandn=1, 2, ﬁf;” [X] is the set of ail condensation

i=1 &N

peints of {X¥. IX}={x] ir has~éffinite basis,

It is now desirable to. ﬁake up the key theorem of the present gensral
discussion of spaces 3: The\311stsnce of a complets o.n. set in any space 3.
This theorem holds w1thqut‘anj further restrietions om 3, but in order teo prove

N
it, it is necessary-&g use rather deep results of the genernl theory of seta;

the so-called “w€£} ordering theorem® of Zermela, G, Cantor's "transfinite ordi-

nel number&ws'gnd the possibility of definition by Mransfinite induction®.

(For a systemstic exposition of this theory, see, for example, Hausdorff, loc.

2i%t. belore Definitiaon 12.6, PP.55-88, 58-62, and 62 respectively. For the

notion of "powsr®™ and "equivalence™ whioch will be used later, ses ibid.,

ppe 25-41, 70-73.) Now it happens that, for separable spaces 8, there exists

another proof which does net make use of go much material, Thersfore two proofs

will be given: first, for geparaile spaces 8 (Satlsfylng Postulats D ) with-

out the use of the general set-theory, and second, the sot~theoretical proof
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for an aroitrary space 3.

THAOREM 12.16: There exists a complete o.n., set A in 8 if § satisfies

Postulats Dl {thet is, if 3 i_sseparab_l_e_] and A iz at meost countable.

Proof': Let fl’ ki +++ be a sequence of elements of S which is dense

2!
in 8. Let fr be the first element ;é/ 0; in genesrsal, let fn be the first ele-

L

1 i
ment of this sequence after fn which 1s linearly independent of fﬁ ,...,fn .
i-1 il i-1

If for soms value k of 1 there exists no such eloment fn (k bg’:’hg the smellest
k \

such value of i), then the induction steps at f . Letdal} such elements
-1 4 .\’~
fn.be selocted. An o.n. set kf-’l, \Pos «er DAY be codsbructed from the elsments
i Y

AN
fn by the process used in the proof of Theorem {2:.\15. It follows that every fﬂ

i i

iz a linear aggregate of 's and comrer's?ly:' And as every f)u is an £, ora
o 4
linear aggregate of fIl 's, every f is;"‘a:"linear aggregate of w's,
i A

The “P's form an o.n. set A by construction. If f is orthogonal to all
D
the p's, it is orthogonal Jg.o\}heir linear aggregates and therefore to &ll the

f}l‘s and the condensatip:ri\p(;ints of the £ 's, that iz to aay, to every element
o\

g of 8. Thus £ is_ogrthogonal te itself and £ = 0, Hence A is a complete o.n.

O

&

get, Q
A
THEGREM 12.19. There exists a complete o.a. 88t 4 in S.

N\
Proof: Let the elements of § be well ordered so that to each element

of 8 there is attached an ordinal number . . The elements P, of A& will bs se-
lected Prom among the elements i_'u( of § by transfinite induection., If all v,

fi < &, have alreasdy been sslected, then proceed for & as follows: if ”f‘xﬂ'a 1
and {f , *«Pﬁ) 3 0 for every {3 < o for which a k[?ﬁ has been defined, then put

S = o # if £, does not fulfill these conditions, then leave Y, undefined,

It is obvious that the set A sodstermined is o.n. Suppeoss there existed an
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alement £ of 3, I i’” =1, orthogonal to A, This ? has =n ordinal numbor

® , £ =f , and it would be the case that Jlfdﬂ =1 and (£, \f‘ﬁ) = 0 for a)l

<ot . Hence r = Fy = Yo would have been insluded in A. Therefore 4 is
complete,

IV is of interest to inquire which subsets M of § sutisly Postulates
N\
, and (f,'g) romain
2 AN
unchanged). One seeg Immdiately that the answer is as follows:" N satigfies

\ W

4, B, sto. (of course when the definitions of £ + g, af

A (linearity) if and only ilf‘ M is linear. M always sa@;'ié'.i:"ies B (existence of
an inpor product). M sebisfies El {completeness ) 1f‘"érzd only if it is cleosed.

Thus the ¢.l.m.'s are those subsets oxf,qgw‘which satisfy A, B, and Ei’
the postulates which have been explicitly s:s's}n;d to hold for 3, Therefors
the c.lum,'s are of particular importanc.e“.:“:

1

With regard to the other pvos;(;iflates, the following remarks sre appar-

N

4

ent r if 8§ satisfies Cl, then afix subsst M dees also, and K. Nl’ where H,

z2
is the N asgociated with § {@ivﬁz that associated with M, It g satisfies Cz,

¥ may satisfy either Cl'gil*:;Cz. If 8 satisfisg Dl’ M does slso { Theorem 12,12},

3

\¢/
and if § satisfieg ]?,zé“.M may satisfy either D. or [

: 1 2T
NV
THREOREM\IR< 20, T il W Fici diti
THIE \aé & _Ihmfﬁiﬁl?i" 2 nocessary and sufficient conditior
that Eii‘ﬂj~ set A o N be complete in M Is that any elemept £ of M be repre~

s_gritable_ﬂi}:% (f, )
A

Proof:; The sufficiency of the condition is evident, for if f & M and

fLla, £ =0, The condition is necessary, for if £ is any element of M, then

n
% (f, \,Oi)\.pi is an elsment of M (where '~Pl, *ers . 2re elements of A), and

% {(Foe)y is convergent and is an element of W since M g closed,

f - ; (f29)% is an elemont of M which, by Theoren 12,17,
FPEA

Hence

is erthogonal

to A. Since A is complete, ¢ - > (F,9) ¥ = 0 and £ > (e, el .
YeEA . FEeA
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THEOREM 22.21: If M is & ¢.l.m., & nocessary and sufficient condi-

tion that an o.n. set A in M be complete in M is that, for eny olement ¥ of M,

flel)® Zl(: )15

Pz‘oof: The condition is sufficient, for if f iz an element of M
orthogonul to A, then “I‘H = Qund £ = 0. The condition is nzcessary, for,
by Theorem 12.20, any element f of M may be repregsented as £ = Z (£, xp)\o .
Hencs (I, f)=”f“2=([2(f;ﬁ°)?], f)“z.(f;‘f’)(‘f’,f \Ef Hf *’)J

YEAL FEA e *f’

Corallary: th ding th the conditi T £,
orollary: In the preceding theorsm the condi 1033.'11 ” Z l( L!")I

=y

is eguivalent to the condition that (£, g) = Z {r, kp)(kf, g) for any two

elements £ and g of M. { Z converges absol taly )
YEA

Froof: The second condition ob\rlously'\lﬁplies the first. Converssly,

% 3

if in the first condition f is replaced by f + g and f - g and the two re-
sults subtructed, the condltlonﬂ(f, g) ) Zﬁ (£, ¢)v, g)], as well as the

absolute converge nce of Zﬁ resul’t. If herain f and g are replaced by if
YEA

and g, then it is seen that S(f:;' ) = Zﬁ{(f, v ¥v, g)], and the absolute
¢, &\ WEA

\
convergence of 2 o follows\ Hence (£, g) = Z £, e v, 8).
YeA NS

Definition lE.}.\i} ‘It M is a subset of S, then @ M is the set of all
N -

¢lements of S orthegondl to M.
N\

TH_OREM ;2 22: M CN implies that @ US> @¥. (DM iz always a c,l.m.

O = @{MSK*G) . @M 4, ... = E@U) s ©N) - ... .

Proof': That M C N implics that ® MO SN is clsa'r.

The set Qf of all elements g of 8 orthogonal to & given element £ is
olviously & ¢.l.m. Since®@ M = Tr %, it follows that @M is a ¢.l.m. (Note_
the second remark after Definitlfhi ]1'[2 13.)

Suppose £ € (DM, Then B L £ and Qf:) M., BSince Qf is a c¢.l.m.,

Qe = [M]. Hence [M]l £, that is, £ & @[M], Therefore @M@ [M]. By the

first part of the theorem, @ M2 @ {M] D < [M] since M < {M} < [M]. Hence
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QMA@ [Nl = (M].
Irfe (@M » (®N) - ..., then F E @M, f £t &N, ..., g0 that

fA1M £ 1N, ..., and therefore £ | P, where P is the sum of M, N, ... . Con-

versely, if £ i P, then f &£ (M) * (OF) « ... =@P =@[P] ==y, ¥, ...].

Thus all parts of the theorem are proved.

TEEOREM 12.23: If M is a ¢.l.m. in S, every olememt P 5C°S may be ro-

presonted in one and only ons way as f = f1+ :E‘z, where fl &\'}Ignd f2 t &M
Froof': By applying Theorem 12,19 to the c.l. m”i’.}[.(iﬂstead of 8), it

follows that there exists an o.n., set A in ¥ which rs‘complete in M, ILet fl =

= 2 (£, %)y and let £, =f - £.. As in theQroof of Theorem 12.20, £, £ M

YEA i
and £, 4 A. Hence f, € @4 and .6 @ [A] \By Theorem 12.20, [A] = M, so that
fzé = N, g ™

R

X

This representation is uniqﬁé? for if f = £+ £,= £+ £ {where r, and

I’i are in M and i“2 and fé are 1n@H then fl—- f]'_ = fé - f But £ - f!

& 2° IR T
in M and fé - i‘z is in @H..\i,ﬂence the element represented by these two ex-

NS

pressions is orthogonal de itself so that it must be Q. Thus £, = £ and = £).
N

THEOREM 12,28 '@ (® ¥) = [(M], or, if M is a c.l.m., @(eN) -

—-—--.-—._*,,.

Proof: \!LS@(E)M) =&{ o{M]) by Theorem 12.23, and as [M] is s g.l.m.,

the first pa.r‘b of the theorem follows from the second if ¥ is replaced by [M].

Se it 1s\nécessary to consider only the second part. As every element of M is

orthogonal to @ M, Mc@®{oH¥). Thus it remains to show that © ( ® M} M.

Suppose f ¢ (S H), By Theorem 12,23, f = fl+ r o+ Where fl& M and

f,& MU By the preceding argument, f 1€ @ (OM), so that £ - f, =f, is in

2
®(©@HU). Since fp is in both ® ¥ and © ( ® M), it is orthogonal to itsslf and

must be 0., Hence £ = fl and f € M. Thus © (eu) c M, and the proof is complete.

It follows from Theorems 12.18 and 12.20 that in every space S satis-

fying Postulates €, and D, (that is, separable but not Buclidean),there exists



LIT. LIREAR SPACES 27

a coiplets 2.m. set A: wL, Wos ves ian 8, which must be countably infianite,

such that cach olement £ of § can be represented as £ = E (T, ), =
20 1 1 4

= E 2, ., Whare = {t, %i). Hence to sach elsment £ there corresponds
i=1

one and only one s2t of complex mumbers (xl, x .) such thut, by Corollary

23
1 of Theoram 1¥.11, E lx ] is finite, Converscly, to each set of complex
'-:m-_*fi'_lrat's{ _‘c_i, X2, ..1) Such th E Ix I is finite, there corr "J\ by
* i)
Tnsorem 12,15, ons and only ons oLement Foof 8: f = 2y PN
: 1P,
i=1 %

N
If © corrasponds to (xl, X,s +er) 8nd g o (yl, yg,‘:.. }, then af

23
obvisusly correspoends to {axl, X, svs)and £ + g to Qf ¥ yl, Xo¥ Fgs wen 1,
285,

{vl

Thus 8 {which was assumed to satisfy, PNStulito D ) is isomorphic with

»
N/

i

and, =y the Corollary to Theoren 12,21, {f, g)

the spuce given by A\

Dsfinition 12, la. The Space Gu. all sequences of complex aumbers

(1,1c

42 vea) sush that E ]X:LI hg fl{llte and in which the operations af,

i=1 ...‘\ T
£f+rg, (f, =) are defined g &\
of o8 s _._,\\
EL(_?\:_;, xz, ...) ?(.’8.35,:]_, a}:i,, ...),
- N\’ -
(x}., ‘{29 ---3\"‘”(3’1: yzs "') = (X1+ yl’ )C2+ yEJ "'):

((X!, Xg\’\\"): {yls Y2, --.}) = g;{iz}i

is nalled g;‘l:bért spass, H,

It Jill be shown thet af and [ + g belong to H, and that the summation
defiaing (£, g) converges'absolutely. If a space 3 satisfying Postulates A, B,
Ca. Di’ and E1 were now known, these assertiocas would fellow from the iscomor-
phism of § and H deduced sbove, as would also the fact That H toe satisfies

thoge postulates., But since no such space has been canstructed hore (so_"_le will

e given in the appendix to this chapter; H is the simplest), these assortions

must be proved indepeandently.
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2
The absclute convergence of Z X, y follows from thet of f 'x ’
i=1

and Z J.V ’ together with the fact that ‘xiyil = Ixi’ . l 1 %]x rz l’yila-
i=1

The remaining assertions are provided for by

1+ 2nd and E1

Proof': The relationg 2) to g) of A (Definition 12.1) are obvious, 1t

THEOREM 12.25: § eatiasfiss Postulates A, B, t,z, D

"\
being necessary to prove only that if £ and g belong to H, then af and f + g

do alse. But ir le , is finite, then L [a.x J is alsq I‘mlte. Agein, if

i=]
Z Ix l and i ly ‘ are finits, then fo + y , '” inite since
i=1 i=1 R &
lxi+yi]2+‘xi—yi‘2=EIxIZ*I&'y‘ s 80t hat ’x+y!2 EJxI lyilz.

N
It is apparent that B is satisfiac}a'::\
Since the elements i‘j = (0, «..330, 1, o, «»+) {the 1 is at the Jth

Place), j =1, ..., n, are linearly ’i}ﬁependent C, is satisfied,

That H satisfies D (S{parablllty) follows from the faet that the set

of all elements (:'fl, ...,i@\. 0 0, ver), n=1, 2, ...,ﬂkf 1, :j(f )
’R(f ), };‘[(f ) rational, s countable and dense in He (If (x

"\

H, there exists an md an element (fl, - f

ponding to & >\ Z ]x' -\:—- and” J
,~ i=n+1

17 Xgs +ee) s in

2 O Gy «..Y such that, corres-
£ .

fi"xil ST i=1,.,.., n.)

If'“%na\lly, consider the fundemental aequence of elements f = (x(n) (n)

X2
R=1, 2, Y.. . Since 1im ”f -f H o, > [ (m)_ (n)] 80 that
M, T i)y m, n-)-co i=1 i
for each i, lim |x ( ) :En)l =0, Thus x, = 1in x{n) exists. But
m,n-}co n-spm

lin (1t 3 | (m) x(B)[2
T~ oo i=] i
a

o
at least one of the numbers Z lx(m)
=1 1

P, .

= ) g2
)= 0, sothat 1 5 | (m)_ = [% = 0. Thus
M 3= * *

- xi‘ is finite (say for m o m, ),

Xgs wae} iz in H, end, ag (xj(.m"), xém") veo) is in H,
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L4 - £y - » = 2
f=(x,, Xy, «ss) iz in 3, 8ince 1im g ngm) - x.[ =g, lim £ = f,
1 a " i i n
m—so 1=1 M50

Hznoe El is satisfied.
Ths entire discussion from Theorem 12,24 on shows that there is one

and, up to isomorphisms, essentially only one space § satisfying A, B, Cz, Dl’
and ., i.2., the Hilbert space H. ~

Now conzider the case where 8 subisfies DB‘ A o
L\
2\

Again there is a complate o.n. set 4 in 8, but it i's:tmi; countable,

.

77%%
A mey be mapped in a one-to-one fashion on some set I of'.finc’tices. For exampls,

&
it A were finite, T might be chosen as the set of po’s"::L?ive integers 1, ..., ¥
(where N is the number of elements of A); if .&'.,pvér‘e countably infinite, T
might be chosen as the set of all positive :ixilr;égers 1,2,04a; in any event,
because of the well ordering theorem, I,:lﬁgy ;;6 chesen as the set of all ordinal
nunbers ® < L, whers JL is a sui?:ai;,if; chosen "aleph™ {(i.e., that for Iy
for these notions, ef, loc.cit.m{z(;fore Theorem 12,18). Of course, the map may
)

be chosen in other wuys, and\i‘t‘“ﬁight even coincide with A.

If & &1, dengﬁéé”‘éhe element of A corresponding to o in the given
one-to-ons mupping :o(j;):mon IbYy P

By T’na”o;"éu E:Z .20, ocach elenment f of S5 can be represented as
£ =a£ZI (fr\f;ﬁ(ﬁ;=dazl X, fy s where x_ = (f, ¥, ). Hence to each element £
thers corresponds one and only one ordered set of complex numbers (xzds = &I,
such that, by Corollary 2 of Theorem 12.11, Xm;(Q for only a countabls set of
s and Z ‘xoglz is finite, Conversely, to each ardered set of complex
numbers z:c:};, & & I, where xcU! 0 for only a countable set of «'s and

Z lxdfa is finite, there corresponds, by Theorem 12.16, one and only onse
AE]

element £ of 8: £ = Z x, W, .
X E

If £ corresponds to (xm) and g to (y,), then af corresponds to (ax_ )

and £ + g to (xm + ym), and, by the Corollary to Theorem 12.21, {f, g) =
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= Xy T
o
*xEX %
Thus 8 (which was assumed to satisfy DE) is isomorphic with the space
given by the following definition {in which it is not assumed that I i5 non-
countable or even that T is inf'inite; but the I corresponding to the space §

discussed above will of course be non-countable ).

Definition 12.16: Let Ibe an arbitrary set (of indices og) The

space of all ordered sets of complex numbers (x, ), 2 &1, sgcih that xm% 0 for

onlyi countable set of s (}i I itself is countable, ‘b];ii?s condition is omit-

2
ted} and &% fxm, is finite, and in which the operatlons af, £ + g, and (f,g)

.\\
&re defined by
o(x = (ax), o
() + (7)) = (x + y;;f):
()0 (7,00) = 2otk
aciz
Is selled B N
The sumaﬂ X, 37“,. ‘iiajs;bsolutely convergent, apain becauss lx yd‘f-

= Ix f l Yo I : “é-xd\fz + %T};\jg. In other respects, HI is characterized by

THEOREM 12, 2&. II‘ Iis finite with N slements, HI is isomorphic with

~"
tha H-: 8 i p i igfi
a dmensz_ona_:l_'\domplux Buclidean s ace, that is, HI satisfies 4, B, Gl’ Dl’

and B . (For~.I =(1, ..., §), Hy is identical with it.) If 1 is countably infi-

2+ T

nite, Hga.s 1somorphﬂc with Hilbert space R, that is HI sei'tisfies A, B, C,, D
and B, By is identical with it,) I£ I is non-oountable

For T = (1, 2, i),
HI satisfies A, B, CZ’ DE’ and El
Proof: The Pirst two statements gre obvious.,  (Ses Theorems 12.14 and

12.25,) The third ig proved for 4, B, CE’ and El in the same WaY ag in Theorem

12,85, D2 follows, by Corollary 5 or Theoren 12.11, from the eXigtence of a

non-countable o.q, set 2
tabl Oe 80%, .., the get of all elements \fﬁz (5"(1‘3)’ where o , p& I,
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THEQREM 12.27: Every space § sstisfying A, B, and E is isomorphic

with soms spuce H With regard to isomorphism, I may be replaced by any set

[T

I' of the same "power"™ (that is, any set I' on which I van be mapped"\in a4 one-

to-ome fashion). But every change of "“power" destroys the isorQ'o}"phism, that is

if T and I' are of different powers, HI and HI Aare non- 1s<marn‘uc. thus if I

is to be chosen es the set of all ordinal numbers K <}:L where L is any

aloph {of, loc..cit.before Theorem 12.18}, then .ﬂg\?ili deueml’lﬁd uniqusly by 8.

In the secnse of Thecrem 12,28, the rgl\tlon between CP . Dcr’ and T

2}_"_& is e follows: if T is finite, Egtha.t _ﬂ_z =1, 2, vae < s, Then

3 satisfiss 'Cl and D 13 if I is co-mtablgk’;infinito,_sg that L = e, then §

satisfies -32 and D.; if T is no:1—‘,.(:rum:::r~blD 80 that M > e, then 3 zatisfies

AN

P

02 and DE' \\
Proof: The firgtfsfﬁatemen‘t follows from Theorem 12.14 and the remarks
&/
tefore Definitions 12;&“"and 12,16, The =econd statement i1s obvious, The fourth
'"\Q¢

follows from tha.tgﬁga. The last statoment is a repetition of Theorem 12.26.
It remsins Eg{p?é;e the third statement, i.e., if HI and-HI, are isomorphic, T
\/
can bs mapSéd‘in & ons-to-ons fnshion on I'.
Now if I is finite, HI is a complex Euclldean space of {say) N di-
mensions (Theorem 12.14) and (by the remark on complete o.n. sets following
this theorem) I and I' must both have cxactly N glements, Thus the third

statement is proved if I is finike, and similarly if I' is finite, so that it

may be assumed that both I and I'.s.re infinite.
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i - 0‘=I,rj, .
Define Lfﬁz (60(!,3): where o, fEI 6d\ﬁ~{0 i« 7‘[."3 . and let

the element of HI’ correspondiang to ‘f’ﬁ in the isomorphism be \f" « In HI"

HD;,J“ (xh), &8 Tr, f€ I. For a given fr &€ I, denote the countabla gt of
o
7 .
s (€ I') for which )5"’(3 # 0 by Yﬁ .
kR c&;é I' belongs to ne Yﬁ

N .
axnd orthogonal +o every Ho;, » 80 that its image W = (-er)’ A BN, in I by the
N

Fi
¢ . e
» Then = (ém'm;)’ &'t I', iz normuiized

A, s
isomorphism ig norimlized and orthogonal +o every L,Oﬁ . bl\nr:é the condition
(L...u, L]oﬁ) = 0 implies that yﬁ = 0, therefore o= 0, 'Jghwi"@ contradicts the fact
that W is normalized. o\

Therefore Tt is exhausted by the sun o{ 1 the Yﬁ's, 80 that its
2,
"power® is not greater than Natimes the "pdwsr™ of I. But infinite powars
Bre waltered when multiplied by N (cf.idc.cit., P71}, Hence the power of
X

I' is not greater than the power of.,;z;‘; ’In'berchange of T and I' shows that the

ad

powsr of I is not greater than the “bower of I'. Hence I and I' have the same
powsr. This completes the pn@‘g}' of all parts of the theoreom,
This characteri;aj;ion of the spaces § satisfying A, B, and R leads

1
to exactly one invari;al'ﬁ’f i.e., the gleph .
'\w

Defini®ddmy 12.17: The aleph N, which is up isomorphism-invariant
A\ - - a

———

+ &
wniguely detenm}ned by 8 and which completely characterizes § to within iso-
< = e s T STely —— 7 o AN 189

NS
morphismg™(PHeoren 12.27}, is called +he dimension of g,
— 2008 \WMeorem 12.27 — = = Cimension of

The spaces 8 with L =K = L2, v < ws R j[-l(1 N) are complex
1y,

Buclidean spaces of finite dimension and lead tg nothing new, But JLo=w

leads to the Hilvert space, H = H(l o 3 which ig a new and interesting geo-

mstrical object, The chzas [l > wr serrespond to still more general spaces,

. but
sl

H(o&)a(( 1% will be seen that these spaces are very similar o Hilbort

spuce with regard to mogt o their important Properties. This is dus to the

fact that SYEry separable part of them 1ing in a subset of them which is &



ZII. LINEAR 3PACES 33

Hithert spascoe, that is, in a separable c.l.,m. Thus all theorems which do not
rofer simultansously to more then a countable or separable set of points are
renlly always discussed in Hilbert space.

In order to obtein this result, the following theorsm is neededs

THEORMM 12.28: If X is a subset of 3, theu sither all or none of the
sets X, 1X], [X] sre separable, S

Proof:s If 1X] is separable, then [X] is also, sinc@\‘fgi\j is dense in
[x]. 1If [X] is sepsrable, then X is also, since X < [X]\,n}“f{: remains to show

that if X is separsble, then {X]is also. w'\'\'

Suppose the sequence fl, f2’ are 18 den{e in X, Ifﬂ(al) ’b(&l)’ cve g
PN\

R(&o) ,.'j(& J, m=1, 2, ..., are all ratuma.l\ then the elements a{f‘l+ ter * B f]
form a countabls set D which is dense 111 the set of all elements a.lf1+...+ ani’n,

,' S

where n = 1, 2, ,.. and whers al,...,!ﬁ;lL are arbitrary complsx numbers, Thus D

¥
R

is dease in the set of all elem@pts"alglh.ﬁ & 8. where Bysrevs B, 8TE arbi-
trary elemeuts of X; therefo{e.,D is dense in iX} ., Hence {X} is separable,
and the proof is comple‘l;’e.:'
A/ .
Thus every Qéparable X is contained in [X] which, being & separable

&
c.lim,, i g com.iiex' RBuclidean space or & Hilbert space.
&

N\ ) Appendix I..

Tt is desirable to give further szamples of spaces having the proper-
ties 4, B, E, and some combination of CP . Da‘ _(IO,U' «1,2). In particular those
with 02 Dl are of interest, as .they ere isomorphic with Hilbert space {cf.
Theorems 12.25 or 12.26). This is particularly important, because these ex-
amples will be "unctional spaces™ which, on the ome hand, will later be use-
ful in illustrating menmy results of the theory of Hilbert spaces; and on the

other hand they lead to the chief applications of the theory. Other examples,
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hazed on uncountably infi«ite direct products, will furnish interesiing cxamples
of "functional™ hyper-Hilbert spuces.,
Bef'ore we conatrust our examples, 1t is advigabla to give the follsw-

ing extension of the definitions of Chapter XII:

THEOREM 12'.1, Assume that a space 8 satisfies the postulates i, B

N
of Chapter ZII, except B, b) (cf. Definition 12.3) instead of widbh orly this
AW,
is reguired: NS ©
e — e N
> P
bt) (£, £) = o. N 3
'\'\.’
Then § can be transformed in the following way inthg spuce § which satigfies
T T T ——— = 210 0Wing vmy InhdA space L SEL LS
4, B without @Xceptions ':'\\"
W
Call two elements £, g of 8 eqqlvalent f~g, if flt - &ll = 0. hen
$ths following facts hold: ,~.’:'“
(1) f~f; f~pg implies gmfwfﬁf; g: §~ h implies f ~ b ,

{i1) ga11 the set of all gw\f for a given f ¢ g, Qf. A1l Gfp are mutually

exclusive subsets OI\B (tnat is: P £ ng implies @, Q(g = 0), and

of
1;_}5:_1“1' SUm is Se .\Ca’ll their sst 3,

(1ii) f~g implie® mf ~ng; £ g, h~k implies £ + } ~

b~k imgides (£, n) = (g, k), and thus {1 = |lgf .
iv If ,\) £ 5, rs 7 - he :
(iv) _<?}$/ EPs8e, then g D
8, M8, ¥ alons ( 34 1ot on the particulsr choice of £ 2 J | g g ).

Gl then 2@, F - %, (g, ), g,

{v} EE@_E_@EMEE (iv) 8§ satisfics the postulates A, B without ex-

g+k§f"“‘g:

(£, &), J£fi depena on

ception ,
_—

(vi) § satisfies E if and only if § satigfise it.

{(vii) § has o:n. s subsets and compl“‘te 8.0, subsets of the Same powers as S.
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Proof: One verifies immediately that the proofs of Theorems 12.5
{Schwarz's Lezma)} and 12.5 depended on B, a), b'), c), d4) alone (cf. Defini-
tion 12,3). Thersfore they apply to our present $. Thus ”f“ = 0, “g” =
iply |lafll = o, e + g” = 0. Considering f ~f =0, g -1 = ={f = g},
f-h={f-g)+ {g-h) this proves {i}; considering a(f - g) = af - ag,
({f +h} - (g+k))={(-g)+(h-k) it proves the two first stfdkements

o

of (iii). 4As to the third statement of {(iii), owing to the dibthibutivity
S )\
of (g, k) {cf. B, a), ¢), d4)) wo nosd only Lo consider the\oase where f = O,
<N

h = 0,  Then ](g, k)] = el - Jk” =0, {g, k} = 0, 3@;;16ting the proof.

(ii), (iv) are immediate consequences OE;Fij; (iii) respectively.
All parts of A as well as B, a), n')p\c) d} carry over immedistely
from 8 to §. ”Q“ = O means (J = Qf Wl“r»hﬂf“ = 0, that is £ ~ 0, that is

B = (,3'0; and Qo plays the role of..Q':‘Ln S. Thus (v) is proved.

48 to (vi) and (vii), it i3 obvious that the behavier of S and 3 is

o\

identical in a1l thess TGS?LQ?S: we pass from 8 to 3 by replacing ecach £ £ 3

by its Q{.; end from § tdS by replacing sach @ e 8 by some f ¢ Q (that is

N\

g = g.). NS,

N\W
Definit.tsér"l:?‘l: If 8 satisfies the assumptions of the proceding theo-

rem, thon thengormation of the ¢ = ;jf's iz callad ths process of necsssary

" \¥/
. 3 - . - o - . . . . _
1dentific§\tions in 9; and 8 is said to arise from S by making the necessary
rentilicagdons in and o 18 to oy rae

_i_d_f_e_-rit ifications in 8.

In what follows we will, for the sake of brevity, identify SD,P*(M}
and §
D, p(3)

4 loss of clarity.

ans corrsapondingly £ and ;ﬁf , Whensver this can be dous without

Let now D be a space and P*(M) a regular outer measure in it (dafined

for all subsets M of D, of. Definitions 10.2.1, 10.2.5).



36 XIT. LINE:&R SPACES

Of course, we could just as well begin with a finite, non-nagative,
totally additive measure function V(M), defined on a half-ring H of suhsets
¥ of D. Then we would form, by Theorem 10.3.2, the outer measure v;(M), which
agress with v (M) on R and is determined by R -- and put /u*(M) = v;(M). As

we will see below, it would even sutfice to extend w(M) to the Borel-ring of

N\
R, BR{(R). But we profer to use consistently the outer measurt. Thercfore
O\
we return to the }_1 (M) a8 mentioned above, e\

Ny

~

We now define: "G

«§ &
Definition 1212, Let D be a space, and ).1’@1) be a regular outer mea-

surs in it. Let M (1) be the set of all gomplex valued functions £ = f(P},

definsd for all P& D and measurubls mth r}upect top (M)

Let SD P*(M) Egilie_ set ii;_all thoss & I'.IE’ )1*(}&) i?f', which
5 !f(P)[z d}l(M ) is finite, o

THEORHYM 12'2: We have &
{“x\
D,}l*(M} and QE_S_ & cowplex constant, then ar £ 8

{((af}(P) = a .’f@.}).

(i1) I, ges

(1) Iffesg

D, p* (1)
ﬁ\'f () then £+ g e sD,P*(M)((ﬁg)(p) = r(P) + g(P)).
(i11) 1 s, g.{\ D, (3)° ‘then 5Df(P)E(?y du(M,) s finite.

™

(iv). I w& deJ.lne in 8, P*(M) af, £ + a8 in (i), (1i) and (f, g} =

= Sf(P) (P )d}-l Mo} {cf, (i1i)),ths situation of Theorem 12',] arises:

SD,}P"(}-I) satisf'ies the postulates 4, B, E of Chapter X1T, where B, b},

must be replaced by B, b ).

{v) The necessary identificationg {or

N De.f'inition 12'1) &TG these- £ o~ g }i

and only if the set of all p ¥ith £(P) # g(p) has the measure 0, The
S ,}x*(M) which resyultg from these 1dent1f1cat10ns gatislign A, B, E Wlth‘

out exception. (Cf. Theorem 127.1 and Definition 12'.1.)
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Proof: (i) is obvious; (ii) follows owing to the identity
2
le(p) + g(P)I2 =le(®)|® + Ig,(1=)|2 + 2 R(£(P)g(P)), from (iii); (iii) follows

from lf(P)ngj i 5 gif(Pﬂz + ‘%’ig(P)Ig. The statements of (iv) concerning 4, B

are obvious. || - g“ 0 means (f - g, F - g) = Q, SIf(P) - g(P),zd}L(mp) =
D

0 everywhere, this means that | £(P)} - g(P)IE £

iy

2
and as 1 £(P) - g(P)]
£{P} # g(P) holds only on & P-set of measure O, This proves the £3%3% half of

N ¢
28N
{v), the second half follows From (iv} end Theorem 127.1, (vl,\(‘vi). Thus it

remaing only to prove the statement of (iv) concerning B f;That s

1~ D, p+(1) is

complete, : ~\

Consider a seguence f s 1ee £ S i‘or which lim “f - r H:- 0.
T2 *QLQ\
Ty Ti==3w 0y

Thus for every € > @ an n = no(&) exists sug*h‘;that m, n & n  imply

< o\ o
e -¢ 1 5 €.

N
X

Choose a subsegquence jl’ jz’sf:;:':; of 2, 2, «us (/‘flc f2< ves )} wWith

z 2 : > Al - =1
AR (a-,,—.) Then ’Eo-’ 'E'cwl —:3?}?4_’)’ It £ - fl-:r+|1' Io
S le () - £ P)l d (1,;} = }I “2 2% . Denote by T _the
D ‘Ea- ﬁ 4T P /B xd“i“l B o
\ = 1 .
set of all P's far W@i}h If (P} - ¢ (P){ Sl then TO" is measurable,
£ ) ’ /Qa- Itﬂ'
and the above iutegral is clearly 2 2,)}1 'E}_Efﬁi; thus P(To') B
AN
Therefore d™\W
\ [us] D i 1 < 1
- 45 17!

M1 )T 3 pr)E
¥

q
‘_mé
q
q

ig

® @
and hence n( | | > 1) 5._15,.:* for every p = 1, 2, e1e, and is thus = Q.

.P=1 o—-:-P T T4
@ @
I »p ¢ 11 Z T , then there sxists a o _P(P) =1, 2, ..., such that for
j)=l o =p
=
O =p,P¢ T_. That is lf (P) - £ (P)| <=~ . As the series



%8 xIT1.
1 1

— o+ * ... converges,

T L.

O (= o]

Ag W Z T iz & set of measure 0O,

_P1

in it and put them =

P
0 there {of,

exists everywhere, Define £(R) =

Consider |f (P) - ¢ (p)[*
, Lo
ifﬂ(P} - f(P)[d, and it is always

tkis proves Lbe existence of

LINBEAR SPACES

lim £, (P,

G=2»001

W& may redefine atl £ (P)'s

the first part of (v)). Ther lim f(/ (P}

[
im 1' {(P). r(F) is clearly measuratie.
0 =30 o N\

If o—s o, it coenverges ‘to

- N\

0. Therefore \ \/
N
= ) 2 PN
lim 111{’5 s L(P) - f,i (P)lz d)i(mP) z S f(r\P - (p)] dp (3,0
O =0 = fo

(Cf. Corollary 2, Thecrem 11.3.7.)

A

o
< Z
comes = g7,

enough,

Thus
=1 - (f—f)&S

forn—-—n(é), that is i&}f =
:thO m
We wish now

conditions ¢ artp
N O

Defigﬁ,\ion 127,27,
’o

measurab*ﬁte\ dubset of ¥ has }A(N)

THEOREM 127, 2.
— I R sed
sot hag a finite Tgsgure,
Proof:s The Pirst statem

Wi CED write D = Dl+ D+

of finite Measure,

Fut ws M is irredueibis, F(D‘M) = 0

far ail wulficlently preqt a.

=n (¢} elso; and thus the 5
D
the integral ds Finife) r_o-rg S,

f.

oo\ alscass the behuviar of 8

.& measu_r&tle subset M 01 D 1s ir F&GLleLL
braibvindlicds eeet T AMelhlE,

. - d o o ' . 1. . . .o RPN g
ETY seb of mewsure 0 is STfeueibis; every irreducible

went is obvious,

vy ch: Dac

(Cf. Definition 10

Therefore }1.((1‘1 )

AL
Nowr assw\ﬁg‘f\n' = no( E). If o is grest

d).l(MPJ on Lhe lel't sids be-
TR

N

*(b,), and with it

P*(EH. WNQ},I the ubeve inequality proves ”f‘ - =

This completes tre proof'.

L )‘]*(B’T)Wlth respeet to ths

of Chapter XIT.

if avery

O or P(h')'

48 Lo the second,

vre, Where gl] D are mewsurable
o

lim },t

=

Beus

i} = };[1‘.{‘.;} .

thus ths letter hLoids

*208.) Thus p Moy,
. or J.I(N) for each n,

= }I(D’IMJ gf.(D;:) is finite.

ohserve that
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THiok L’Il' 1yt fl. If }L (Pw) lb deterrrmed :Jy & courtable half-ring ?f’l

ane every ore-point-sol (P}, P £ D, is measvurable; ihern avery irrsducible set

M is eithsr of measurs 0, or elsec a P £ M with O a).l((P)) < +ay exists such

that M - (P] s the measure O.

Remerk: It ie ctear that any M of this structure is irrsducible, and

that it delermines the P In question uniquely. O

0~ 4
Proof: We must prove that if M is irreducible and }1(3“)«} 0, then a
‘®)

P &g Mwith ),J\I\"J - (F}) = 0 exists, thus that P(M) = P((P)z},}‘azld hence that

g =< }1{(}*}} < +poc {ike lulter by Theorem 12'3), . M\'\’
Write D as u scquence Dl’ DE,’ cae . For\each = 1, B, saey
}.I(D__M:l =0 or }I{D M) = }1{1{"]; let . g, .....B\O‘ the n's of the first kind.
i Fal )
'] AN

a0
Then }:(E_— D, M) = 0 aiso, arc thus > R MEA M. Chooss « P & M which is

X
‘i > D K, that is, P4 D for G\ 1, 2, ...«
is I QY
=1 o o N

Consider }1 (p)). 1Ir L‘B\\ re w:)u(h.f), we could by Theorem 10.3.2 and
the remurk irmedistely i’c}.;}&wmg, it, find a seguence DJ 0 4 we. with

\ & Pg

(F) < H Z },1(1») Then for some p o= pP, Ps Dp’ ﬁ(bpm)
p= 7 L}?

"}J&D ) = ZI}'&\ ) < }1(?&) Thus },1 M) , p=mn  for some o =1, 2) ...
3\  p

anc e shqugu heve P ¢ D, which is impossible. Thus, since {P)c M,
=

ItA

}A((p)) = }1(1"'3:', we must have }J((P)) = };(M}, }1(11 - (P)) = 0. This completes the
proof.

We now prove the criterion for C 3

5 gatisfies ¢ if and enly if there exists a
D,}J*(M) 2 -— =

fi:l_l_t_e_ nunser E{f_ mutually sxclusive irreducible subsets Ml’

TEROREM 127.5:
. h%o_f‘D, such

that

X
}J(Mn) w~Ofor n=1, +ue, H; F(M‘HZ:l Mn) =
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Ir this is the oase, §D

iy |2 (H) is determined by a countable half-ring % , and every ong-

P*(H) nas § dlmensions.

point-set (P), P g D, is measurable, then we may asaume that the ¥ are one-
A = T e —— L T Z2F BRE

point setg: Hn = (Pn).
Proof: The 1aat statement results from the previous ones immediately,

by application of Theorem 21,4, Q)

Consider Pirst the aecesaity of our conditions. Ass’uzn‘s that S P‘(M)
\ r
fulfiils Cl’ and has Nt = @, 1, 2, .., dimensions., If Ml - H are mutually

exclueive measurable subsets of SD (M) all with mfgmu-es > 0, then write
sgain D = D+ D+ ..., Dy D, ..., all )J(D ) I‘inlte {(of. Definition 10.2,6).

Then lim P(Dilln) = P(M }: thus there exlst{an i with P(D Mh) > 0 for all
1 =0

L= 1, sv., m Define O
= Lder Penu
"?:B otherwiss

~N

£, (F)

Then f o€ S ’}‘*(HJ because )iﬂ;ni y = Py } 1s finite. 1p Z & f = 0, then

the P with Z e £ (P) ,{‘0}01“311 & set of measure 0; thus thers exists a P g DM
m
with > 4 ofn(P) = ;{ MThis Proves &= 0 for all n = 1, vee, m; thus the

n='l &

fl, cea, fm a.zte\';N.uearly independent, Hence m 5 X',

I'Pgr,gffére the possible m are bounded.  Let p = K be the greatest one,
We seo that g3

N
Consider the system Ml veay l(m. Ir }1(}) - Z Mn) > 0 we could add

n=]1
D - H to it; th - = i
nzﬂ o us }I(D r%_ Hn) 0. If g measurabls M < l{n with }X(M’) 7/ %

P(Mn) existed, wo could replacs ”n by 1, Hn- M'; thus M]'l is irreducible, This

establishes +tha Hecessity of oy conditions, together with the fact that

SD px (1) has Z ¥ dimensiong,



Appendix I. 41

Consider next the sufficiency of our comnditionz. Assume that

Ml’ veas LIH are given, as described in the theorem. As Mn is irreducible,

(M ) is finite, and thus
P
(=1for P el

£ |
= (J otherwise

belongs to SD,}z*(M): A

- N
n 14 ; - . y 4 5 ,\ -
Consider now a real-wlusd £ & SD,P*(L'E) The set Mnjﬂ‘g['f:.g\P) < Al is
measurable for every A , and < Mn, thus its measure is 0 oR P’(M). If we put
A= -1, -2, ..., it converges to 0; thus the messure J'Q:;}iot always Jp(M); if

we put A= 1, 2, ..., it converges to M; thus the Wdesure is net always O.

\Y;
PN
Therefore these A have a finite g.l.be: A . \HGW P(M 3 [f(P) <A- F])

}J(MS [£{P}) < A +-.]) = Ju(m), end there;{‘o:te“}.l(]ﬂ 8 [A - -;-ﬂ £(IY <A +—)

= }l(l’! for p =1, 2, «or © Porming pﬁe.product of all these sets (for all

p=1, 2, ...) we obtain P(Mn3~ff(P) = An}) = )1(]3'3): or :

p s [e(p) £a 1) = 0. O
If f is comolex\falued %e obbain the same thing by forming /\ for

(}{f(P) and t]f(P) &e}ara‘bely, thua cbbaining A} and A" s end then setting
\

f\-n = A" + i /\;;,,
s
Qm %t is clear that £(P) # Z A £, (P) implies

N
P&ZMs[f(P}%Al+(D-2M)

This is & sum of N + 1 sets of measure U, thus is it8elf s set of msasure 0.

N

Tnerefore f ~ £ d in B f = £
%ﬁi _,B.D in D}l*(M) %Anﬂ

< . .
Y : o ' g . kas = N dimensions. This estub~
Thus Cl is fulfilled, and SD,}J.*(M)

= <
lishes the sufficiency of our conditions, and proves that SD,}:*(M) has = §
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dimersions,
Therefore tke proof is vompleted,
As to the D_we can only give g suificient criter:on for D'I {ite con-

verse teing thus necessury for D );

THEORRY 127,8; SD }*(I‘) satizfies D ifr A (1‘.) san be fj_ll._J_n_E_'_Li_ﬂ

a \owtalﬂe_ hahur'lnL .qa. O

Preof: We wish to show that, 1if & choice of & ha9 T‘mrr recdi in which
Q 1
" }I*(Ll) is separable, We skai [f“r‘.} ave § = b ‘*(MJ

by various subsets, the zoperability of whick JI"'TH:L((‘\ the aeparnbilivy of §,

3’3 is countable, then §

Considcz‘_ first the set S1 of all reg] auc non—ne-\t;at.ive furcticns in 8,

T L(F) €8, then obyiousy Kr(p) ang Efggp) £ §; and thus r JF) =

* s (0, Rr(P}), £,(P) = han(o meL )=wa,$fwm
5
fS(P‘J = Max (G, - 3:‘(13}) are in § g m:i ’rherel"orr in 3. Nowf - F ifr .
O 1 s P
y A\
And so, if the sequence f(l), I‘(Zr

s +-+ 18 densze inp Sl’ then the countuble set

s +xxi 15 denge ip 8. Thus we reed

= N

enly prove that El is afarihle,

s
R __..’F' - =
Fow we L‘I‘E’\‘* Prat if an p(z) 2 o is messuruble, there exists & sequence
$

f L 1 ] T L
of mesguruble R{t’l]}tt_ valued funetiong fl(P}, fZ(P),

guch that L;"'\} (P ;:IZ(P}

seo With rations] values,

TA

v TER), £ (R) s r(E), (derine £ (P) = the
g,reatsvt\:m.],-er of ike form “%" » P =001,02, (L whicek is ¥ F{E).} Thus

X 2. _
EIT(P) - fn(P)J G)l(]'npj - 0, ”f —-f_‘n” == 0, that is: The set S?, of =11

d o= » = -

functions ip 8, which have orly & finite number of Cifferent vulues, all of
those being rational, is dense in Sl' Hence we neeg only prove that 32 iz se-
Larahle,

For any messurable subget M of D whioh has a finite Teasure, let IM(P)

be gefined by
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=1 for P2 U
1, (P)
¥ =0 for P4u

Then SE is the set of all functiens of tie form E Por 1qu » Where n=0,1,%,...3
o= o
PW"""lor' raticrul; 1‘-.']1, ceny Mr meseurable with a finitc reasure. Henee if S5

is ©he svace of all functicas 1,,, W &s above, end if lN;_n, lmgu, «aa i8 B se-
et L

_ T ‘n\
gquence depsc in SS’ then the countable set of all El [ IM {n =~Of1,2,...;
o= ’t A B
Posevrap raticnal; Pys ++es P, 1, 2, v, is dense in SE’ 1‘.}(&5\"1.'&6 reed
: : N O
only prove the separability of S . N

If we wish, we wmay consider the M's thf‘mS‘J.TquiﬂBtEad of the 'L 's &8
Ny 0

elewents of B_; enly we must lhen define \;

7

i

1y 1y 5!1 (P} - 1 {P)rg\d) (1) =

Pistunce (M, i)

§ 1. ap(e) = @V E) - ).
(F+K-p ) }l P f::z

S
N
Al

>3

Fer awy of our M's we have ~\

}J(M) _ }Z*(M = vaﬁ , where all Ni& /R, and M < Z N
/ lcl

i=1

I
Thus it £ > 0, there ex:la\ts B sequence 1‘11, P R, U CZI K, with
1=

<

F(L'i) + £ Z ) (N\})”} },_(Z ¥, ), }I(Zl N, M) = & . Now tho sequence of

\ N i=

A\ o

1, 2, ..., converges inereasingly tovward Zl I‘Tl, therefore
i

(
sats Z . "yfg

i=] '\,)

n

. Nz
()~ (-Z_' N), and there isoann = 0, 1, 2, ...mth)l(‘z hi)_
i=1 )“11 i=]1

) - & . P{Z Nl)
i=1

A

& . The refore
1=l

Il
Dj_st; 5 T -
wnce (M, é_l N.) )1((11

+
l\/|
=
v
=
it
=

:F((f ¥ W)+ (2 B 2 X)) s
i=1

i=1 i=1
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D n
Sp'(f .- M) +}1(Z K- > Ni)§2€ .
i=1 i=1 i=1

n
Thus, the set § of all sets » N.»n=0,1, 2, ...; N, vy N2y is
4 = i 1 n

thus 55 is separable. T+ follows from our previous remarks, that this completes

the proof. O

The theorsms which we have proved snable us to co&i‘at\ruct many examples
N

of'functional spaces which satisfy postulates A, B, E,a:};dwsome combination. of

 {

CF s Dc_r’ 02' Dl" that is Hilbert space, isg of cl"x;".’eff'\finterest here., 1In order

to illustrate the reach and working of this metl;od, ws shall discuss esome
9, N
examples, A
Example 1. Consider g discr?j{:é“msaswe (cf. Chapter X, §5, example 1).
In this case we know that the spac'ev.:ﬁ must be countable; thus it is s finite or

infinite goguence of points Pl*‘ Pé; =++, For which we may as well write

1, 2, «.. . Rach point hagi"a.,\weigh‘t w I 0. The general slement of § ’
» D,}J*(MJ

& function f(n), n = 12" eus, may be as well written as & (finite or infinite)

seguence xl, ch, ..:.f):’z.Then 8
I’
& Z wn ,xn,

=\ n

D’}l*(m) is defined by the requirement that

be f:a.nert\?..m-— which condition ig void if the set p (of ali n) is finite, and even

if the set of &ll n with wn >0 ig finite; byt an essential restriction if in-

finitely many n's with W > 0 exigt. The inner product for f fv(xl, Xos ces)s

g "“(.Yl: Ygs =e. ) is Conzequently (by Theorem 12r.8),

(£, g) = ans?n du(M ) = f wxXYy .

il
n=1 n'n

4s H is countable (cf, Definition 19.5.1), § 1+ As the only

ne-point-sets (n) with w, >0,

D’P*(M} fulfilis D

irreducible sots with g measure > 0 arg the o
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thevefora we huve O, or {12 according as & finite cr infinite nunber of n's with
w = 0 exist, ard their number is the dimension of § (by Theorem 12t.5).
6 D,}z*(m)

If, i particular ail w_ =1, then we are tack to the normel forms of

Definiticns 12,1k and 12.18, But woe obtain only the cascs with dimensions

= 0

, L, 2, «vuy No that is the finite dimensional Fuslidean spaces and Hil-

hert spaco. ~
Bxample 2. Lot D be an N-dimensioral Buclidean spece R&,s N'=1, 2, ...,

or a subsst of it, We could choose for )1 {¥) the exterior measure criginating

from any Lobesgue-Stieltjes-Radon-measure (ef. Chapter ,X;~:§5,’ lixample 4). We
L % .

shull only wconzider for the moment those P(M)Ts whiblhdre absolutely continuous

with resrect to N-dimensional Lebosgue measure{é@ﬁf) thet is
p) = § W(P)d)i EMP),

where W{P} iz sny measurable, real,‘égﬁd non—nsgative function {ef. Chapter XI,

§2. ). ~.\

‘/
is the\.set of 81l measurable functicns £{F) in D for which

,,o

\5\1f(PJ!2d}1(MP) f, ) I Py ap, ()

N
Q

is finite. ”J{e inner product is
w\u,

(r, g) = § £()elPloplty) = SD W(P) £(P)elP)dp, ().
D

We have W(P) O in all of D, but as the cmission of all points with W(P) =

from D obviously does not matber, we may as well assumo W(P) » & in all of D.

1¢: thus 8§

?‘l can be chosen countsble (cf. Theorem 10.£.1%; has tThe

D, p* (M)
Preperty Dl (ty Theorem 1216). 4s =& countable R exists, the second half of

Theorem 127.5 shows that the M ocourring in that theorem may be chosen as
n
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one-point-sets., This contradiets in our cese P(Mn) > Q; thus §D *(M) can be

in case €y only if P(D) = 0. As W(P) > 0 in all D, this means thaf Py (D} =
Yhen SD *(M) has dimeneion O, it containg only the element 0. Ctherwise L

have the cese Cp; that is, the combinetions Cys Dyz then §D,P*(M) iz a Hilbert

gpece,

Most of the important illuatretions and epplications 6Vt he theory of
Hilbert space are of this type. N\
O
Bxample Z: Al11 foregoing examples lend to spaces fulfilling D1 that

ig to separable ones. In other words: the dlmel’lE"lQn was alwuys = No. We

wish to show now that any infinite dimension sz be obtained,

v

()
Let I be an arbitrary {infinite) s@‘~of indices, and form for each

hE1 the same set: (o, 1}, with the dlsqz‘ete msasure w = w, = 3. This is the

cage ZE in Exemples 1a, 2, of §5, Gh&.pter X. Form row the direct product

'&[El ]II Zz, and its measurs P(M)’ by Definition 10. 4.3, Put D = sz, A (MJ

= i u r ) imensi
}.1 ( ), and form their S *(M) We shall see thet SD F*(M) has the dimension
j\-'_ We have at any rate @age Cy; and according as it

i = J\) or = J\J Lig bhall have (ngs Dl or D_.

power(I). 4As this ig =

2*

D = i 1% % is the 3et of all functions x « x(x), where « € I, and the

values are QAM. Define now g function B (x), for emch « € I, by
N\ o o

SN
/ 1 = -
\ d\o(x) 2x(c{0) 1.
Clearly Fc( (x) is always = £ 1, gng 4p particular = 1 in (1) ¥ ” I Z
<g7
and in = -1 in 0 3¢ E'\”&_f}] Z * Rk,
% oFay

This proves tret .Fgf\a(x) is measurable, and that for any finite subset

of I *],,3; o (x) iz also measurable, FurtberfTTF (x)]
SDI I;I;F%(x)] QM ) = 1; thus a3 TT e

1, 20 that

) belong to SD,}'I’*(M) and are nor-
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malized. Ome cun verify eusily that d\ﬁ [t‘,ﬁ P y“)dP(M Y=0ift @ A o
o

bhut 85 dogl¢ Fma(}:) . . Ef\{f Fckg( X) = " E(‘f’]w»‘])—sﬁ’SVFd‘"(x)’ this proves

s 1T R (x) - “I];.d.\(x;-d};(m) 0if ¢ £ Vo Thus the
D'OE.

q-|= ‘ F;\o(x) form w normmlized orthogeoral system in SD,Jﬁ*(M}'
o But tris system ig complete. This is shownm if we prove that their
Q)

lincar aggreputos are everywhere dense. Now we saw in the proof of Theorem
24 N
. ..,N E,(R,j are every-

12'.8 that these of ihe 1 {n=0,1,2,+..; ¥

SoW (x) 1’
it ‘
wherc dense; thus it swifices to show {hat esach IZN { ) “$5 a linear aggre-

L=1

~\

gote of cerlain of our functions.
Fow esch N € K has obviously the I‘orr M ” l Z s where

¥e ] ” Zo, andQ’j is soms finite subseb, bf I. Wo can replece @ here by

"“—‘?o o, \J
any finite set ¥ Qjo < I. Thus each z N, ¥ € W, , has the semo form.
19‘1

Pecouse of the obvious addltl'v’J_ty,‘it' suffices to consider the case where M

is a one-point set; let its e'l fm{en‘t be (x ; &€ ¢ )s where x, =0, 1. Then

the set fo be considered 1s\L [c ' (XR"B&' [ ] Z ; or if we put

2 eI-$o
5?5 = Q @’ , Wwhere qu?,fo 111@ and = 1 in l:Zer, then we have:
L= ] ] (0) ) y ‘\El) x ] This formmle implies
Ny \E..¢+ we I~ (B, 9.3

\z i 7y z 7

N -TT - Fen - a0 Zen

) L( )= * €@ * g

T . » . ’ ‘ -’ J_h f

which is cleerly a linesr aggregate of e d Fogo(X)!s. Thig completes the proo

of compieteness for the ] ¢ f};o(x)-
oy

S f e = + et of all ] I Fo(x
Thug the dimension of Sp yiy) is the power of the set o e u\,,( ),
D,

thet is of the set of all finite suhsets Eﬁ of I. This is 1 + power (1) +

iy

* (power (1})% & ... . It is clear thwt this powsy is = pOWSY (I); but as I is

infinite, it is even = 1 + power (I) + powser (1) + e =17 No. power (1) =

= s s - ig th bitraril
=1 + power {I) = power {I), Hence the dimension SD’P(M) 18 The artl Y
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preseribed (iafinite) power (I},

Note ‘krat in spite of the nor- separability of S "J(E y {if power

(1} > NO}, The tofal measurs of D 4s finites:

ZORS YN PR

Other important examplies of function.) Fpucesn :«uh‘;\t\ E
: A

letes origirate from the theory of wlmest periodic funet: ex;\ g Thuig rvhe 4.Bohr

our postu-

slmost-reriodic functions fulfill &, B, Cys L, EZ’ »;{X”T?}'A. Besicovitoh's
4
generalization of thege funeotions f1lfills A, B, \Qé\D E.. (The latzer
1

gpace is isororphic with the complete exter sw;{;};f the farmor in bLhe sense of

Theorem 12,15, Tts Gimsnsion in tkepower(;;}\the coutinum, N .} But woe da

C D

not intend to give Purther details ol *\hws suk jeat L
x*i*

ferred to the monograph of 4, Beulemr*l ch,

ere. The reador ~uy be re-
"Almost pericdic Purctions", Cam-
Ny

bridge, 2osp, {or. in parimg%r Chapter 1T there, and itg AppEndin, pp.oT-128;

especially pp.10g-112, ) g\ O

p. N
m\,J)
P Y,
Y
'®
QQ
R\
¢
NN
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CHAPTER XIII.

LINEAR COPERATORS.
N

It is sssumed in this chapter that S satisfies Postulateé A, B,

NS ©
and E._. A o
4 X

Definition 13.1. The direct product of § by itgelf, S X 8, is the

set of ull ordersd pairs, {f, £') , where f and ' ats ;eﬁalrf_rgigg 8. Im

o all R In
8§x 8, a<lf, £'Y is taken to be (af, af'), {0, 81 +<g, g') is taken to be
(£ +g, 7+ gy, and (£, £'>,<{g, & >’).‘i_:§_7taker_z tobe (£, g) *+ (£', &' )

It is apparent that S X 8 sati:a?}e.s Fostulates A snd B. 1If (f]., gl> R

~ @

<f2: 82>, ess i 8 fundumental segueﬁée of elememts of § X 8, then it is
NN
readily seen that this sequenaﬁ.\‘hés the limit {f, g)in 8X 8, where
f= lin f eand g = lim gl Hence SX S sabisfies Postulabe E.
n o
s -

Defirition 1”3:\2*."' An operator {(in §) is & funchion @ which is de-

o’ . . .
fined over some sub®et D of § and which bas one or mOTE values gf in 8 corres
——— T e e ——— e —_— ———

NS

ponding to e,a\g}i\':glement £ of D. The set D is called the {definition} domain,

3 T
b(g), of #. "The set of all velues g, £ & p{g), is called the range, R(Z),
of B. The sob of all olements ¢, @), £ & D(f) and fr & R(F), is celled tre

graph, 6(f), of 4. Thus D(@) < 5, E(f) © S, and G(4) < 8 X 8.

To suy that {(f, g & G(f) thus meens thet £ & D{F),

g & R(G), #f

Sxiste, and one of its vulues is g-
Definition 18.3. An operstor f s called lineer if G(g) is & l.o-

TEROREY 13,1, If @ is linear, then p(g) and R(f) ere l.m.'s.
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Proof: IfF, (ffi‘)o) and (g, {gfg}0> are slemente of G(£), where (ﬂf}u
and (ﬁg)o are particular velves #f and fg, then {r, (o) > + L, (ﬂg)o> =
=<t + g, (f),* (F).) ¢ 6(d), ana a<r, (88),> = <ar, u(dr) ) € c(g).
Therefore (f + g) € D{f) and af € D(F), so that D(#) is a l.m.,

[(de) + (Fg),] € R(F) ana aldt) & R(F), so that R(f) is a 1 s Bl + g)
exists and one of its velues is (zk) + (ﬁg)o, end @(af) exlffg\ang one of its

values is a(}z"ff)o. N

\ W

As every linear set containg the zerg e] emem;(,'%o, O} iz in the graph

&/
of every linear operator. O)

Definition 13.4, 4n operator g is c&&éd Single-valued (s,v.)} if

there 1s gfsceliated exactly ons value ﬁf w1’t>h ea.ch elen&nt fE D(ﬁf

Thus, if # is s.v, and ir (1 N gl and {r, gz) are in G(#), then

gla gz ﬁe. ~r:.;~‘

THECREM 13,2, A neces"sary and sufficient condltlon tnet a linesar

operator @ be s.v. is g;_\é(o) have the migue value O.

Proof': By the remarL above, 0 is one of the values £(C). Bence the
N\

condition is neces&gry To show that it is sufficient, suppose that <f, EQ

end {f, gg) am}e*lemt,nts of G{f}. Since g s linear, (r, g~ <r, £o0 =
= (o, gl ﬂgz'} £ 6(@). Thus &1~ B, 1s one of the valuag Jalt

unlque\giue of B(0)} 1s 0, 81" &, = 0, and g =

0}. Since the

£,+  Therefare }5’ iz s.v.

By an argument similar To that used in the preceding proof, it may be

shown that i _Ef is linear and if }3’ kas two ditferent val u2s gssociated with

some element in D(g), then £ has infinitely many velues associate

element in D(4),

d with each

I £ is s.v. and linear, and if f ang & are in D(F), then f + g and

ef are in B{f} , ang BE + g) = gr + Be und ﬁ(af) = agf,
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Dof'inition 13.5. An operator ﬁf is called conftinuous if it is con-

tipuous at svery point of its domain D(#) {cf.Definition 12.6).

It is apparent thet this definition is meaningful only when ﬁ ig §.V.
Fence, if an operator 1s described ss being continuous, it is alsec described
28 being s.v.

Tt is desiruble at this point tc make a digression from thl;\general

N

Q

(NS,

leory of opcrazors in order to discuss in detail a partlcula Iy dmportant
s,,.

special class of operators, the projections, N

Defivition 13,6, If M is a ¢. l.m, in 8, if, il\e s, end if £ = £+,

where fl € M and 12 £ @ M (by Theorem 12.23, the &presentatlon £+ f2 is

unique J, Ihen i’ is calied tke projection of: of i"\m M and the operation of pro-

jecting £ on M is denoted by F 1_f‘ fl. {Note that projections are defined
enly with respsct te c.l.m.'s. ) ~:'."'

SN N

THECKENM 13,3: A neceu@;ry and suffiecient congition that an operator

"’

E be a_ ‘}rQJac‘['lon P is tpab\\i) E is 5.1., llnear, with D(E) = S, 2) (Ef, g) =

M —
Z
= {f, Bg) for every [ gd;@ in 8, and 3) B

%

= E, where E2 is defined to be EE.

W E uniguely de.tew{i}i;;i b}’ E.
A

Proaof R necessity: Condition

"

oo

1) is immediate. 2) If f and g sre in

£ M and £ © N
S: then f m\\;ﬂl‘l- f‘2 anc g = gl-l- gz, where fl £ M, fz £ @ N, gl £ B gz

Tren (xr, g) = (fl’ gl+ gz) = (fl’ gl) and (f, Bg) = (f1+ f2’ gl) = (f‘l, P;l)-

3) Bf - fl and Ezf = E(EF) = = f]. {(the decomposition of fl& M being

f =
1 fl-t- O},

By

If there existe a colan. M suck that T = PM’

It £ & M, then B = Bf = 3 if £ ¢

Proof of uniqueness of M=

then, for any element £ of §, Bf = me-

; ions of the egua-
fet in W, thren B = Mi # f. Hence M is the set of all golutions o g

nd let B he Then
tion Ef = f, and R(E) ® M. Now let g be any glement of 8 & g =

¢ £ < M, and thus
B'g = Bh. Since §°= E, Eh = h, and 1 & M., Therefore R{E}
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R(E} = M. This completes the proof,

Froof of sufficiency: Let M be the set of all solutions of the equu-
ticn Ef = f, Then, as in the preceding proof, M = R(E). S3ince E is linear,
M is linear (Thecrsm 13.1}. It will now be shown that E is continuous. By
Schware's Lemma, lmell |ef 2 Ier, £)f = | (5%, £)f = | (B, BP)| = (ur, ur) .
bl ”Ef”2 for every fe g, TIf “Ef‘” = 0, this relation mey be di;r"i\ded by HEf”
With the result that el T el . But this 1t condl’tloI; ;b:rzouf‘l.v holds if
HEi"[ = 0, so that it holde for all £ ¢ 3, Hence, for~ aﬁ;y ' and g in 8,
H B(f - g)” = HEf - Eg] ”f‘ - g” , and B is cortln‘b}m over 3. Therefore M is
PM' Let f be any ele
meot of S. Then £ = B + (f ~ Bf). But ?.f':;}svin M. Since B = Ef, Ef - Bt =

closed, so that I is & c.lum, T remains to BQQ)} thet E =
$

If g is any element of 8, 0= (Br - Edf’~ é) = (f - Br, Bg). If g runs through

Sy Eg runs through M. Hence {r - Ef~) &@ M and B = : P

Remurk 1: If E ig ar, bperator selisfying conditions 2) and 3} of the

preceding theorem, then, J{‘ee (B, g) = (E £, g) = (EF, Egl}, it follows that

(Ef, Bg) = (&r, g) = (f”Eg) Conversely, if E ig such trat (Bf, Bg) = (#f, g)

for every £ and g 0{18, then conditiens 2) ang 3) obtain, for (Ef, ¢) = (Bf, Eg)
T TE\?:‘) = (£, Bg) anad (ir, g) - (me, gg) -

tion) (E(EE‘),go) (E £, &), o that (Bf - g° T, g) =

(by the preceding squa-

O. If g is taken to be

Ef-E@\‘thenEf—Ef 0&ndEf=E€‘f‘orallf‘. Hence ° = g,

Remark 2: Tt should be mritcularly noted that, from the proof of tlhe

a4 s - .
Preceding theorem, ir g P]-f’ then M iz the et of g1l selutions of the equa-

tion Bf = f, and M = R(g),

Remurk 3: Sinee {®r, £} = {Er, Ef) = “E{‘HE, (Er, £} is real! and non-

negative., But it wus shopn that [Eefl = el .

Hence 0 3 (mr, r) S jeh®,

Remarlk 4. Certain Projections

ars gf Particular intersst,
1) 1r ¥ = [g], By o,
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13

2) It M=35, P, = 1.

1]

[, where gl =1, BE = P f = (£,% )%«

i if]
P@M[’ =1 - Pl = (1 - PM}f‘, s thet B_,=1 - B

3) If M

The preceding remark has some noteworthy consequences.
Remark 5: If E is a projection, 1 - E is alse a projsction, and sinece
E=1- (1 - E), it follows thut E is a projection when and only when 1 - E is

& projection, (This may be verified by the following compu{c&'bi?n: (1 - E)
N\

\

“1-E-E+E =1-E.)

Remark 6: If E = Py, then 1 ~ = B oo j:hjiéc’au is the set of all
solutione of LLe cquatien (2 - E)f = f, that is:{\waf :t.he equation Bf = 0, More=
over, @ M = R{1 - E). \

Remarlk ?: If B = P, then we ,S'&W that B = 0 as well as lzefl = 0 are

charecteristic for £ £ & M, B i‘ 15 chars.cterlstlc tor £ £ M. Thus

N

”Ef” =HI‘H is necessary. But 4B is also sufficient, because it implies

-2 l? = (1 - E)f,\{)"'}: (¢, £} - (B, £) =l 2 fmelh® =0

(1= B)f = 0, B = £. cdds B = £ as wall as JES) = |£f is oharsoterisbio for

N
%

£ N, N
”\‘

vaoy@xﬂ.a. If E and F are projectious In S, then

FE, 2) that E + F

a necessury and
§_11f_f_'}ciegg c\cmdwtlon 1) that EF be # projec jection is that EF =

be & PI‘OJ'ecticn ig that BF + FE = 0, soother such condition be be:.ng that EF = 0,

i - jecti is
and & third such condition being that FE = 0, 5) that B - F be 2 projecticn 18
t-_lia;t_ EF = P, unother such conditicen Eeing Eﬁ‘?‘i FE = F.

in WVa nd
Proois Tt is obvious that EF, B+ F, and £ - F are linsar, 8.7, a

delired over the whole of S.
1353 - FE i
Fart 1) Since (HFr, g) =(Ff, Fg) = (f, ¥E&), £9 condition EF is
+he condition
Decessary and sufficient thet (EFE, g) = (fs Bg), Moreover,
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EF = FE is sufficient that (EF’)2 = EFEF = EFFF = EF., Hence the condition
EF = FE is necessary and sufficient that EF be a projectiocn,

Part 2} It follows immediately that ((E + F)f, g) = (£, (E + F)g).
Since (B + 1?)2 ~ B2+ B + FE + F° = (E+F) + (EF + FE), the condition EF +FE=¢
is necessary and sufficient +that B+ F be s projection. But from the condition
B+ FE = 01t follows that E(EF + FE) - (BF + FR)E = E%  prt <“EF - FE = 0, 1
FE = 0. Comversely, if EF = 0, then since 0 is 'a\'ﬁr:z}jecticn, EF is a

N

projection and, by Part 1), BF = FE. Hencs EF + FE = gpl \Therefore the condition

3

that EF

EF = 0 is necessery and sufficient that E + P be & pl\o‘aectlon. Since E + F is
symmetric in E angd F, the condition FE = 0 is e{o necessary and sufficient .
Part 3} E - P i{g & pI"OJGC‘tlon when\and only when 1 - (E - F) =

=(l-E}+F iga projecticn. By the preaedlng part, either of the conditicns

(1 - E)f =0 or F(1 - 8) = 0 is neceés&ry and sufficient that B - F be & projec-

tion. This completes the proof “of the theorem,

\
It follews from the\ig.bove mool that KF is a projection if either E + F

or E - F ig g Projectiond
THEOR 13.6€0"If % = Py 8nd F = P, then #F = Pug» E+F =P

H’&( N:wl*en EF, E +F, and B(I - F) are projections.

Profa.f» It is obvious that it BF =

{M,N]*
and E(1 - F) =

Fp, then L © MN, for if £ is any ele-

ment of\s‘ then B(Ff) & M, F(EF) & ¥, and BF = g, Conversely, if f is any ele-

ment of M, then Ef = f, Ff = f, and thus ®Ff = Bf = I, 50 that MY < L. Hence

L=MV. Again, if E+F = Fi, then Lo (M, W1, for ip ¢ is any element of 8,

then (E + F)f = (Bf + Fr)e fu, v . Conversely, if r ig sy element of iM, Ni,

them £ = g + p, Where ¢ £ Mand b & §, Hence (E+F)(g+h)=Eg+Fg+Eh+Fh‘

ButEg=ganth=h, 80 that (E+F)(g+h)=g+h+FEg + EFh = g + h since
EF = FE = 0. Hence L> {4, N}, snd therefore 1 = {y, NJ. But L is closed, so

that iM, W} = [N, N]. The rest of the theorem is immediste,
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Tt 1.6, I0E = P end F o= By oand BF = PR, then {K, N] = [M, W]

Proei: Lo Ll proof ot Theoren 1&,5 it was shoan that (¥, Ni= [M, N]
i FF = FE = 0. Zal row ibe hypothesis 1s merely that KF = FE. Since E(1 - F)=

: {1 = F)E, Lbwerefore 37 = E{l - F} is & projection, say Fyy. Sirco B'F = 0,

Bt o+ F is w prowotion and, hy Theorcr 12,5, imr, W) (M, H]. ButlFF and

M. Wi'l’r}* Jr‘t}e s,m of these

i

B+ HF = B arc profecticns, and {1, Mwi= [N, M)
tue representaticns of M, it rollows thatb, sipes M CN, {Tﬂ’ N} = {M', MN, N} =
={Nr, Njand (¥, K] = (M, MN, N} = [M', Wi, But im',\m = [M', W]. Hence
M, ¥1 =[x, wi. N

By Theorvue )2.02 end 12.24 it io'llcxr.'s\tlla* i, N} =® (® M@ Nj. Henoe

Pypm 1o - R - B =1l (1 1:.){1 “F)=E+p- .

In crasr to gereralize the Pi“,é(‘.edln{;_, theorem to the case where FEF % FE

it is necesgary Lo irzroduce the\”fo.‘-_lowing definticn and prove the following

tlecren. \\‘

eV operaters,

e{ﬂ [ 1,(;2‘ } suck that 1im p © existe,
\4 n=l1 - JimBE0X T

- : £ed=
Lhen O is swid to have # lipit ¢ over D, and, for £ &

Definiiicr 15 ?"”“If ,Gfl, ﬁ?, ... is & soguencv 2 of
anu if D is the set of

tos

E.lJ auch elorer l-t.;\'
NN
=D(g), P =lin g 1.

III'H’LUI‘:‘_.M L”.'f If B = P and F = P, tth the suquence Z of og,eraﬁrors
B, F3, ¥rE, YHFE, +eu hus & limit G, the sequence Z F, ¥F, FE .. bas the
Hre linit G, and G = Par {The conditiom @ = FE need not hold. )

+h

d Then
Proonr: Let A be the n operator O
11

f the seqwncez

mr-f’ Ar) = (a £, g), where & =1 if m end 1 beve the sugie parity and

8 I+ E. s &/s T

L= ] '3 =

£ =0 ip m and n have apposite peritys Tt must be shown that if £ is any e.e
- f -AT)=

Lt of 3, then 1im A £ exists., Bub ”ﬁ f - "ﬂ‘ £ “ (ﬁmf Aﬂf’ km n )

=300
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= (Amr, Amf) - (,A_mi‘, _anr) - (j,nf,.gmf) + (Anf, ani‘)== (Am_lf, £) + (Azn 2f £) -

- 2(a . &f’ £}, (Sincem +n - ¢ is always odd, the last term of this ex-
D~

s £)+) If it can be shown thet lim (4
k- 1 'y 2i-1""

exigste, then the limit (as m-»o00 and neswo ) of this last expression exists and ie

pression may be written as 2(4 £,£)

zero, so that lim A f exists. Fow (A
n—»m

= (Ayy 0y

pyafsf) = (8,8, A,8) =las I, Likewise

£, £). But Aiﬂf is sither E&if or FAif, 30 tha:b} by Remerk 3,

>
Hence (£2irlf’f> & (A

T At
. 28N > ™
H&iﬁ'l pie1l? £3. Therefore (llf, f) = (A f,f)=

% (Asf,f) 2 ... 20, Thus 1im (&2 3 £,£) exists- therefqre‘ llm.&. £ existe; let
*

ibco n-—-gcn
it be dencted by f If @ iz defined by the condltl'dn'\(?rf = f , then D{(G) = 8

and & is s.v. Tt is obvious thet @ is linsar. Hg!; 1im (.&mf, Ang) =

'\’:. n, D=#oo
= lim (ﬁmﬂl e f,g), #o that (Gf, Gg) = (GANE). By Remark 1 and Theorem 13.3,
m, 0 -»00 QO
¢ is & projection Pp. o

If £ is an olemont of M, fhen Bt = Ff = £, Af=f, and Cf = 1. By

Remark 2, £ € L, so that M < L\ Since FA

2:= A

and FAZi A,., it follows

2i+1 -1 Mei
that, if i, BG = G and %‘G G since Z and F are continuous. Let g be any

element of 8 mnd lst Gg\= f Then Ef = f and Ff = £, a0 that R(G)} = L < MN,
Thus L = M. \\

By 1nta\hang1ng E and F in this argument, it is seen that Z has a
limit G! ;s?m, 20 that G = ¢,

corollary. I E- P and F = P y+ Shen P[M ¥ 1- G', whore G' is the
limit of the sequence (1 - %), (1 - F)(l - B), {1 - 8)(1 - FI{l - B), sia o

Proof: By Theorems 12.22 and 12.24, M¥] =@ (@ode )

+« Hence
Pry,w® e(@MeH) RS B
¥ E~PyendF = P do not commute, it is st11l the caps that iM, Ni=

= [H, N] in Buclidesn apaces of finite dimension, bt .11; is not necessarily the

cage in other spaces, guch ms Eilbert BPECE .,
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1f B = P and F = By, then the condition B S F is taken to mean M < N,
It is readily seen {rut this sign of inequality as epplied to prajections has
gli the usual properting of this symbol, M <N means Ff = £ for all £ € M, that
is for all £ = Eg. That is : FEg = Eg for all g, or: FE = E, Thus E SPis
equivalent to FE = E, and to the equivelent statements in Theorem 13.4, 3)e

The sssertion thut M and N commute is taken to meen that B and‘f com=
mte, that is, thut BF = FE. If M and ¥ sre orthogonal, MLX, thenE and F
are said to bLe crthogonal, Now M 1 N means that 0 = (Ef, Fg) = {? WE) for
gvery £ and g in 3. UGince the reolation holds for every f\;i’. s‘tates that FFg = 0
for avery g, thut is, EF = 0. Thus the orthogonelity ovE and F is equivalent
to BF = 0, and t0 tho cquivelent statements in Tl’Qm}am 15.4, 2}

THEQRED 13.8. The condition E SF is aquivalen’c to the condition thet that
kel S eel for svery f € S, where B 5&5’3{2 projecticns.

Proof: If E = F, then, by t‘lié'above remark, EF = E. By Remark 3 fol-

lowing Theorer 13.%, WBfI = |l {‘[LE | FL£1] - conversely, the second copdition im-
Plies the first, for let B.a P and let F = P Then if ”Ef” Z ipgil for every
£ &35, then in the case\‘v;}:ez.‘e £ c M, B =f and "Ff"}“f" Therefore, by Re-
wark 3, (Ff,f) = ]| \ﬂ‘% 2 el < (¢, £) and ((1F)E ¢) § 0. Since F is & Pro-

Jeotion, 1 - e is & projection and ((1 - F) ) = J( -~ Fif i] 0. Hence

rherefore ¥ < N, that is,

- - \a.nd Ff = f, so that, by Remark 2, T & Ne

ES )
= F. This completes the proof of the theorem.

= Ff.
jell = |72l is equivalent TO to Bf
we have [Ff - Ef]!

i ..”Ef‘“ , end thus

Gorollery: If B 5 F, then
Proot: As F - E, B, F are projections,
I - myal® - (- m)e, 1) = E, £) - B £) = ¥Ff

”Ef“ = ”Ff” means Ff - Ef = 0, Ef = ch

jecti ferak: I
__._-————'_'-‘-'_.

cessary and suf-
THEORIM 13.8. If By,..., B 278 B2 s

then & 18
———— -—
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n
Picient comdition that E E. be a projection is that EP E_ = 0 whenever P £ o,

i=1
Proof': It is apparent that Z E satisfies conditions 1) and 2) of
i=1
Theorem 13.3. If EB = 0for ¢ # ¢ , then (Z Ei)z E (E ) o+ z EE,
n F i=1 i,j=1 J
= Z E,, 50 that condition 3) is slso satisfied. 173
i=1
Thus the condition of the theorem is sufficient, e
o

Ie Z E is a projection, then, for every f £ 8, “ff
i=1

L 2
3 m el -
5=1

= (Z Ef £} = Z ”E f”2 ifEPf,j 2+ ”E f” 2, whelzej:)f/ o . Let g be any

¢°¢

clement of 8 and let Ea_g = f; then E' £ = f. By the greceding inequality, EPf =0

¢ \

Therefore EPEOE 0 for every g, so that B Eo‘ \0 for P ;( & . Thus the condi-
\‘

tion of the theorem is NOCOESRTY .

NN

- is such that

TEEORFM 13,10. Ifa sequanaa bf prOJect:.ona E

1’ EE.’
> > <
sither El = ]32 T ees OF El EE' ‘..., 'bhen the sequence ha.s a limit E which is

na

8 projection, <
& projection &

Proof: If B Eg\m -++» then by Theorem 15.8, |E,f I 2z X 2z
2 yea = 0, where f is, a.ny olement of 8. The sequence i f”z iIE i‘“z, es. there-
forehae a limit, sa\that there exists a. member n such that, for m and n > n 0!
]UE f” - B f‘ﬁ < €, 8ince the B's arq projections, this condition becomss

lr g, )%, 1)) < & (or. Remerk 3), st 5o, [ (B~ 2)r, £)] < €

<
for m é’d B>n. Ifman, B ZE e 2nd, by 'I:he remark preceding Theorem 135.8,

E- E, is a projection. If m > n, E - E isa progection and l((E - E )r f)] < E.

In any event, | (2- B ) 1% « ”E £ - f]l?‘ <€ formandn >n . Therefors
fe ]

lim B, i‘ exists; let this 1imit be f

LTy

But E is s.v.,

*
Lot E be defined by the condition Ef = f +
linear, and defined over ell 8, and since (B.f, Bg) = (B,F, g)
1 i
for all 1, (Bf, Bg) = (#f, g) by continuity. Hence, by Hemark 1 and Theorem 13.%

E i a projection, and the first part of the theorem is proved. The mecond par?d
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follows mmecs foo rirwt und the fact thet if B = Sy, 1-F Z1-7.

Coz'u:-_j__zt_l_‘;v_'____'i_:_i_:. iREN prcidng theoren, El z E2 E4 . Z § and
<. < -
El= E2 = .. =W
Corotlary Z:iu bbes precuding thoorem, if F is & projection such that
" 4 = =
B = For &, = R A Lhern BE = F or E = F; hence E is the greategt
(smalls st_} profuot oo S lalying iie: conditions of the preceding corollary.
Gors Yar oe 0n Biee pregoding theorem, if B, = P gnd E = F ,’»ﬁlen
” B Lo mreCbeang dom 2 7 T Mi = AN
K=WMi or Mo . Sa eesla RAY,
=1 o O
Proois: it preofs of &ll tiesc corollaries are apRarTQnt.
T6 is now b ocireble to resume tle development oﬂ\tne general theory of
cperetors, \~
Iy -- o d tx‘( it agsari countable)
13 Ty v an ‘-}1, ‘?2’ R are~ W not nec 1y )
somplote o.n, sels i &, then the set of a,u elemFm‘bS (s O bogether with

Ed

"l elorets <O, ‘T»,J 5 is a cemplete 0‘“*-, Set in § X 8, Thus the dimension of -
]

$X8 (ef. Detinition 3£.7) is L.o“\lkgle tpe dimension of E. If it is infinite,

b o+ .

t.;erefore the lwe digpomsi O'IS a}{_' eq‘l..\ﬂ.l {Cf Hausdorff, pe ?l)

0> in § X § and lot
14 in 8 X 8. If {8, P I

3

Let & be the oet‘bff 211 elements <f,

¥ be the set

of
a1l elemerte <0, Then X and ¥ are Galella

\“>
t . -
hen ({1, 0, <~t,, "Ny =0, (£, g) = Ofer GLfE B WMET o

somorphism TPPiNg 8 on

I =<0, £7»

(£, gy for all

Hence

g = -
Z T, a.n\\;_ ol +hc sume way, & v = X. Let IX be the 1

Xy Ixf = <f, 0y, mnd let IY be the igomorphism mapping § on Y

The -1 -1 . .
* g end I,” map X and Y on s. If Py e, g7 is defined to be
o, gy for all ¢, then Py and P, 876 Pro-

g, and ip
A PY <f- g> is defined to be
on that o{g) =

ections of §X § on X and Y. It follows from this discussi

1
Yy (By8(F)) end R(F) = I7M(R,6(H)): somveraely, G(F) is the 8°F of a1l sume

f
@ 0} + {o, gy , where f & p(g) and g 18 one of tke valued ér.
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Defimition 13.8: An operator fj}_'i called closed if G(g) is rlesed,

Let fl, f2’ <+« D& & sequence of slements of § and consider tre follow-

ing five conditioms: 1) 1im £, =1, 2) £ & B{#) for each 5, 3) lim (ﬁfnju
00 TG0

exists (denote it by féjs where (E&‘n)o is one of the values ﬁf‘n, 4} ¢ & p{d),
end 5) f_ is one of the veluss @f.

THEORFM 13.11, That @ is closed meena that conditions &% 2}, and 3)

(in the preceéding paragraph) together imply 4) and &§}; tnat'fi\is conlinuous means
A — TS

that 1), 2), and 4) together imply 3) and §) (where now, §} means thet ff = O);

E’_ﬁf is linear, tlen the continuity of B is sufflclqn:t: that 1) and 2} togsther

imply 3). Hence if ,d is closed linesar, and contlnuous, its domain 1s slosed,

Proof's To say thet G(#) is closed\tiezns thet, if Pio Py, w0 is oxy
fundamental sequence in G(g), then the seg'uence has a limit in 8(#). But the
stetement that Pl’ P2, cve is & f‘undamenta.l sequence in G(,@/) is equivalent to cops
ditions 1}, 2}, and 3), and the Statement that the limit is in @(g) is unﬂﬁlent
to conditions 4) and &), Th'e\second statement Follows immediately Froxw Definitiof
1.8, The third statem@t\\results by applying the second to the doubla sequsnee
fm— fn, whera it is:r};;ﬁe;ﬁbered that 8 is complete,

It shoul‘d’ be noticed that the ¢losedness of jb/ doos not imply the closed-

ness of el'ther’\D(ﬁf) or R(ff)

~~pef1n1t10n 13.92 piy 6{g) < G{P}, then P is called & continmuation of .ﬂ)

and p’ is called 3 contraction of‘ P; thls relation between ;a’ and P iz indi Jatva

by the netatien ;a’ < P,

Definition 13,10;:

ﬁ Js tba.t operator whes o gr‘aph (@ 13 (Y £ is
—_— (8) ta(z }" =
that operator whose Eraph G(ﬁ) is [G([c’f\ Thug ﬂ 2 a > ﬁ.

This definition nay be reformulated ag Follows: D(ﬁ) iz the set of all

elements &lfl+ aes F anfn’ where fl’ cees I‘n € D), and ﬁ(alfl+ anfn)_.iﬁ
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fhe el of all wnlaou o K04 L0 ¥ un,@'ft_. L{@) is the sot of all elements f

gk thet 1) ieor o siunoou cvipience 1‘], fz, reo of olements in D(ﬁ) with 1i-

Cgil b, and 2) i 0 ponsible te sclect s set of values (ﬁfl)o, (ﬁfz)o, ++s BUCH
r'f\'. * . io- ’J""' -
that  rim LR ) caolotals Uy f\ﬂrn)o ig neant one of the values ﬁf‘n) Let
) v

£° = lim (Ef ,( fie ty the st of wll poesible values £° arieing from all pos-
gible scouences I, ., ... of the sort desecribed.

N
For wr, o o.tor a, ﬁ ond @ sre linear. {Of. Theorem 13. 1)e ME an
2\,
operaber is s.ov., Lron ocwach of its conlractions is s.v.; for em@éle, if ﬁ is

’s

5:Ve, Then B ois s.w., and if f’.‘f is s8.v., then jﬂf and /d are 8 /e But if ﬁi i5 8aVe,
ot P4
k W
. _ N , PR\ , _
then in gensrdl w1t her @ nor g is s.v., ané if @ is duve; then in general ﬁ is

nst g.v. A8 renhignes! above D(E\ sy not be Closé&}.'

]

Dulinizion 18,114 The isomorphism 7 (f’ "f' y = {-f7, fYmaps 8 X 5 on
itself and will wivurs ve devoted by U ,x"’?:a

N
X N

= 3 =2 - : =4 —
It is sovious ~habt U is 1inenny thet U = -1, and tlat T = 1. Thus

ﬁd}"—= <M, mrn il N is linowar, T—J?E’}”\M- If F and G ars in § X 8, Then (TF, Ug) =
\‘,/ . _ ) '
AEIE qu sondiiion M LW implies that TMLTUN. Finally,
'\. : artially ad-
\li:\-ld. de{g) L a{P), then g is said 1 o be partially ac

1 3 tiall
2.12. 4 necessary and suffic joient COL’)CllulOn trat ﬁgfa_j!f-_{'__l__l

every £ e D(F), eveTy B & D{P),

Bjoint to P is imt (ff, g) < (f, Pe) for o

al
lwﬁf 'l‘U Pis

F
Proor: If £ & D(F) and g & D{F), thexn, for eny valuses ,ﬁff and Pg,

L = 0,
DGE, 85 Ly, rp, ot £ Lo PRDs (< T2 STV
-{jéf‘) £) o+ (£, Tg) - 0, and the sondition 18 pnecessery. A r?versal of the argu-

ment .
" shows tht ~he condition is gufficient.
+t to P, then P is partlally adjolnt

Coroliury: Ir # is partially adjoint =2
L) - __—_________
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to @,

Proof: By Theorem 13.12, (g, g) = (¢, Fg). Hence (FF, ) = (F,7Fg),
thet is, (Pe, £) = (g, dr).

1t Be{g) L 6(P), thon &(P) =@ (36(F). Hence ir p is such that G(p) a
= T8(), then P i3 the maximal operator partially adjoint to B. This leads to

Definition 15,15. The operator #* such that ¢(2") = STe(g) is called
the adjoint of g, \.\...\
By Theorem 12,22, svery adjoint is cloged and\Hrear,

Sinoe Ta(d) L 6(d*), 1t folloms ae in the pfoof of Theorem 13.12 +hat

(g, g) = (r, ,d*g) Whenever @f ang ﬁf*g have aeeqe. Conversely, D(ﬁf*) is the set

v

.

of all elements & of 8 for which there exigf\;"an element g* of 3 such that

* AN\
. &) = (g, ¢*) ror °very £ & D(F) and @11 values £, and R(*) 1s the set of

~

all g* corregponding tq E- A\

It # <P, then, by Thgoré;i L22, 5 p*. Since ¢(R) ~ {e(#)] and
e(@) = [e(d)), the same tk_z?grés; shows that ﬁf* = ?!f‘ = B*.

THECREN 13.13, g**. 2 >4,

_'—'_"_“'_‘“'——«—:-:.

Froofs By Thgbrem 12 .24, 8™ « o (o Te(#)) = © (5 © o(4)) =
"o T 600) = o%s a(g))) - ® 68) ~ [e(d)] - o(F).
TN 15,142 £° 14 4.0, Xhen and only when [D()] - .

M?zibofa Since ﬁ‘ is linear, it fellows by Theorem 13.2 that it is suf-
ficien‘bx

© show that () nag 4, wmi

9ue value 0 when ang only when [D{#)] =~ S
Suppose that p ig a1y value of ;zf*(o}. |

This means that (o, b)Y L Ta(g),
00, n> L #6(g), and ¢n, o> L —e(s),

#, ({-n, o), C=f, -ty )= p

Thus for any ¢ ¢ D(#) and any value

sod (B, £) = 0. Honos h 1D (d), nl [D(g)],

and h ¢ [D(#)]. Therefore h = ¢ i the wnique Solution of these condibions

(iees, g* 15 5.7.) when angd only when & In{g)) = (0). Put this condition is

at 1s, that [D(g)] = 5.
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{cf. Theorem 12.24.)

Corollary 1. If ﬁf is linear, then ,@f* is 8.v. when and only when
B{g) is dense in 8.

g :
Corollary 2z B is s.v. when and only when D{F ) is dense in 8.

| =

Corollary 3: If P is partially adjoint to g and if [D(P)] = 8, then

#is s.v. A

Corollary 4: In Corollary 8, if D{f) = 3, then § = P*o’e:;ﬁ’ P= f_f*.

Coro’lary 5: f € V-implies fio #.

Preofs: Corollary 1 follows from the fact tEaQ:D(ﬂ) is linsar. GCor-
ollary 2 follws from Theorems 13.13 and 13,14 anc{}:};e‘ }linearity of }5*. Corol-
lary 3 follows from Corollary 2 and the fact t]qé‘s ﬁf o P. With regard to Cor-
ollary 4: by Theorem 13.14, )‘5 and P s.re s..v.' Since ,d > F, ﬁ* c P and
FCP. " Since D(¢) =8, =P . Henc‘e.ﬁf =P =¥, Corollary b is obvious.

Definition 13. ].4- ﬁf is calIed M if ;a’ is @ rtially adjeint to

itsel?, that ie, if (gF, g);.\{ﬁ, fe) for every f snd g in D(f); # is called
self-adjoint (s.s.) if g -‘Ef*

N/

THBOREA 13, 1@\- If‘ f is s.a., then 4 is Bermitian.

Sy »Q@f 5 = (e, £'2) - (2, fe)-

THED: AL 1 13.,16: If [ is Hermitisn, then ﬁf*:: ﬁ’f“: g.

ﬁ\‘:)of- ﬁﬁ > # since ﬁ* contains any partial adjoint of g. Hence
#e ﬂ,; since g o 4, ff o ﬁf“:) B.

#%
Cornllary: _{{ﬁi_s_s_.in then ﬁ* = /d = /d

Proof'; The proof is apparent.

** 4 i ition
TEEGREY 13.17, The condition ﬁ* = ﬂ _1:0._ equlvalent t_clthe gonditi
B | .
that § is 5.a.; the condition f§ = & implies thab
T B *k EEE |
;25” it follows that ,d = }Ef s 1,

g is closed and linear.
is closed arms — o =

&
Proof: From the condition /é =
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i ok e Y T "
that E = ,’a”“. anversely, it }3‘ = ,d » then }.’f = ,d « O8ince ﬂ' = ﬁ_’f*, it follow
that ﬁ* = ﬁfn. The rest of the theorem follows from Thesrun 13.13,
THEOREM 13.18. E_f_ﬁﬂ Hermitian and D(g) - S, thon g is 5,4,

Proof: This is the special cage of Corollury 4 of Theorem 13,14 with

It follows from this theorem that every projection ig 8.4,

'\

Definition 13.15: & 45 called bounded over M c D(ﬂ’) If there exigtg

_-—“""—-———-—..._______ ——— e p s\ —— me——
€ \us

& number  such that igell = ¢ for all f & M apg For all quitas ar.

not empty, then g
€ 8.¥.) over D(,E)‘){\'(Cf. Definition 13.5 and remark
Proof: Suppoge fo e g D(gj‘)‘ ."tfo exXists.

cloged aphere @”C s with cente;x{:f‘”
\ *¥' 0o

}  Then thero exists &

+ Lot the radiug of 7' e ¢ « If g is

By element of D(#}. such that,. Hgﬂ I s then £ = p 2 g is in 97 D(#) and
L o

i ﬁf(fo t el S C, whers ¢ {8? bowmd of & gyer - D(F). Sinse £ is linear,
I 8(2¢))) « Uﬁ(fo*“ &) 1‘,@'}0 - M Sllge

”,Efg” Ze, e ,0’('0\)39.3 4 value {,6'0}0, every c\(jdo)o' is also a value of #(0)

by 1ine&rit3" \:I?;ﬁ’s ,"\(,60)0" s G, ” (,@,0)0” 5 J§| for S¥ery complex o ., This
requires t}mf ,do)o =0

o T« ﬁ-’f(fo - el 2c. Honce

< Sinee g ig linear, g is s
N\

“\Eet h be any element of (g
!fhlil= £,

+ T
)andifh;!Olethl=

s, TIRT I T 6, g gy < £ Iall .
ineguality 8till holds, Ifh=

£

. The

Jh] h a
For h = 0 the lsst

P =P, where p ¢ D(#) and P, & D(#), then
= C

I B - .dpoil *F }Ilp - Po.” and g ig sontinuous pyer p(g).
Let 4 be 4 linear operator, apg consider the follewing six conditions:

a) Thers oxists gy °Pen sphere ‘4 in 8 such that # is bounded over

7 b(#) ang 5 D{#) is not

empty,



XITI. LINEsH OPERATORS 55

0 such that | gell = alell , £ & p(d).

1§

by Thers exizts a constant 4

@) Thare exizts a constant 4 Z 0 such that gt - gell = Salle - gl
f and g in D{g).
d) @ is continuous and s.v. over b{d).
o) lige, el Salel-hgh, £&D(d) and g & 5.
ey I (de, o3 Salell?, £ e ng). O\
THAON FM "_S_id_‘z E ,€5 '1_5_3._ linear operstor, then & five\;bﬁdi1:ions
8] - e) ars equivalent to sach other. If ﬁfﬂ linear, Herx;‘ni.ti:‘é?l, with D{g)

densz in 8, &) - e') are equivalent. m<§.'
Proof's The proof of Theorem 13.1% shows thglt‘a) implies b), e), and

4}; it iz obvious that eaeh of these latter copfi%lons implies a), Hence the

first four of these conditions are equivale:_{t{ Tt is apparent that o) implies
X

2'), and that b) implies e) (by Schwarzts Lemma). To show thut e) implies b),
lst g = Z¢., Then (gf, pr) = Bgr HZ Falell«l g, and b) is immediate.
To show that ') implies o) WU\YLE 15 Hermitisn and D(f) is dense in §, replace

i
T by f——~—— where [ nd g mre in D(,@f), and take the difference between the two

2 L
results. Then % [(ﬁfx'{,ﬁg, £ +g)- (ﬁf - Pz, T~ &) 1 =®R{pr, &) =
<1 . N )
=y Al le | 2, 2”'@?’2]- If, ms in the proof of Bchwarz's Lemma, f and g are
replaced by a.g\’;;,}';'d % g, snd then £ replaced by 8f, |81 =1, it follews, exackly

Sg far, £ and g must

]

N
48 in the p\cfof mentioned, that f(fﬁf: g)‘ sle fl v

it follows by continuity that

both belere to Dif). Sines D(F) is dense in S,

5

this relation holds for any g & 5. Thus conditions a) to e) are esquivalent,

and' if ¢ is Hermitian with D(f) dense in §, then conditions a) to e’} are equi-
vaient,

abovs five (_E'f'_c.)_

Dafinition 13.16: If a linear operator satisfiss the

cenditions it is walled bourded.,
Thus, if @ is boumded, it is linear, continuous, and 8.¥. over o(d).
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It is apparent frem the above proof that b), ¢, e) und e1) helg for
the sume set of Ats, [et AO be the g.1.b. of these Als. Then b)), ¢}, &) and

a'} hold Por all 4 = A - It is sapparent that A, is ths l.u.b, ur sach of the

follow:mv exXpressions: Hﬁa” L”ﬁif _%_L H'Eﬁ’ g)J (J%Z_)L_.) R

DEFINITION 13.17: W 4 is s _taken to be A if B is 1inear, Hermitian,
.3 B is linea fermitian,

and D(ff) is denw in g, Shen m,ﬁf}] = g,1.h, —(Ldr—’-g-)——. 11 Eﬁm = l.u.b, (fﬁ f)
e 3 £l

{(gr, £) is real}); if, furthermor‘ﬂ (gr, £y 2o for a.lL D Lri 2(8), 4 iz called

semi-definits, ang ir (gr, £) = o only when £ = O, hen # iz culled defintte,

It follows that, if g 1g HBernitian, |[Ladh'- maxd | 8] |, g s,
The next thrse theorems are cont:f*rrge@vuuth the question as <o how much

an be said sbout J apq g* from the properrtslefs of &,

THEOREM 13.21: 7r g is boundad w1th D{F) dease in 3, then N EJf -

= IIHBI” = m)@’ ﬁ! B D(ﬁ) D(,d ) 35 and E a.nd ff are co‘l"lnuous and a, » V. Over

the' whole of g,

.

be any Funda-

Toof':  Singe
o ﬁ\:\,d (4 )5 (&) Now 1ot U
mental sequence in D(,ﬁ’) Buch that llm ﬁ.‘fE’ exlsts. Let £ gpg Bf be the limits
\¥ ~
of these seouenmm& If, for 411 n, & = f "‘-” then 4 ey Herce
2 _ﬂ'{-” -
{4 ),@/ (4 )ﬁ;&ﬂd HIJJIH lﬂﬁm + Thus E is bounded, wnd hence zontinuous
and g e ovér B(#) which is dense iy gz,

D(ﬁ ) '}*Q dense ir 8, Henee,

"y

By Corollary 2 of Theorem 13.14,

by continuity, 4he condition {(dr, e Salleh s

i i *
for £ ¢ D(g) ana £ € 5 15 not weakeneq :p & is restricted tq being in D{g ).

But 1(d2, g)] = (g, Y= s, ), Hence |(g's, £)] S allell - high for

£ e n(8) ana g & D(g" ). Since B(#) it dense in 8, this condi*ion still holds,
Therefore ”J'ﬁf”f = mﬁ*m s S50 thut /@’* is bounded,

*
*Te over (@) whiop is dense in g, Since ¥ and ﬂ’* ars lineer,

by eontinuity, fep & 3.
ceutinuous ang <

olosed, and continuayg, 1y follows by Theoran 13,11 that (%) = D(,d‘) =
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Leruna : li_ﬁf is liinear, closed, 5.7., disconmtinuous, and D{g) = 8§, if

positive nurber, and if 4)’5_ any closed gphere in §, then there axists

¢ ;s_ any
a closed sphere 9’: in 4 over wnich 1 > C.

Froof: 8incs ﬁ is discontinueous, There exists an interior element
£ e e 43 . ar = U (ﬁfa; o) =
o £ , such that ! ﬁfoﬂ = ¢, Then we huve for £ ,@’fo ;‘-( o, _I.g_oﬂ—ﬂ—

CR C , -
= (_yj_o_f = ||gr |l » ¢. By Corollary 2 of Theorem 13.14, D(g") 4 dense in
er T a Y v

\\,

. . 4 . "\“
§. Bincc =L HEE-— ig continuous in g, this jmplies the exisbencs of a
N/
(8 £ ) - (ﬁf_.’ g1) - (f’gﬂ&!’i Jis continuous in fj

(i)

I
g. £ D(@ § with 21 » 0. Now T
thsreforc thare exists an % = 0, such that e - .Y 5:?2 implies (—ﬂ‘-i”’—ﬁj—) > Ca
O gy

S

‘o . # oo | y )
St 5 s fprh < lieddl o f g fagwe even have fgefl > C. Thus

Oonsidering i

the closed sphere /3('1; “f - fo” ® n m@e’t"s our requirements,

Ne/

as 1 can bs made
sufficiently small that /J{l < //r .f"’:'

TREGREM 13.22. If § ig inear, closed, S:¥. and D(#) = 8, then § is

continuous over the whole of 5.

Proof: Suppopelf were discontinuous- By the preceding lemma it fol-

w\J
N 0.\ N o
lows Ltask, if /sl}tL /Avvany closed sphere in 8, there exists & closed sphere

s L\ s : i
ql S 0 sueh, that Weeil > Cl = 1 aver 9“1, and its radius may be taken < T .

:"\:O ; .
Again the¢<3\§eliists s closed sphere 9; = 8‘1 guch that ﬂﬁf" >0, = 2 over /atz:

Repetition of this argument shows that there

3; > /J‘; > ?;3 ... such that figell > n

ore exists atb least

v ; 1
and its radius may be taken < 7+

exiszts a sequence of closed spheres

- L1 .
var /&;: and the radiuz of /f}; is — - Az § is complets, th

one ciement f in all bne spheres g"nand il;zsfol] is mob finite. This contradicts
o _

the hypothesis that B is s.V. OVET 3., Hence g is continuous.
ciogod, 8.v., with p(g) dense in 8, then

THROREM 15.73. If @ 1s 1inesr,

ffw has ths same properties.
Bame pProgy oo
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Proof: The first two of thege properties are apparent, The third
follows from Corollary 1 of Thecrem 13.14. The fourth follows from Corollary
2 of Theorem 13.14 since f§ = J,

THEOREM 13.24. If ff is Hermitian, if [D(g)] = s, E.Eci_iiﬂz S g, then

’ﬁii.f'; projection,
Proof: By Corollary 3 of Theorsm 13.14, & is BV.; he;:e 4 ana g°

are s.v. 8ince ,@’2 > 4, ﬁz = & over D(#). Since 4 ig Hel:n;i':c“i\an, (gr, gg) =

= (,dzf, g) = (gr, g) for all £ and g in D(g). Hanceﬂ{?ﬁé, ﬁg) = (BI', g) for all

£ and g in D(F), end, by continuity, (@, Be) = (Eff\,\g) for all £ and g in

D(B) (where it iz recalled thet ¥ (and 3, isx,q\?.). Therefore g I - (fe,2) 5

SN e, ana Igelh Sheh ror a1y ¢ ;nj'b(lﬁ). Therefore 18(g - n)/ =

= 1 - Bl ’

18 8.%., it is bounded; # is line‘a',l:;"}'s.ince [D(F)] = 8, it follows by Theorsm

18,21 that D(#) = s. )

A

g ~ n for all g and b\in D(¥), and B is continuous. Since B

The thegfem follows from Remark 1 and Theorem 13.3.

Defin_ition 13.1 ::ilfi"ﬂ is an operator, irr is a piven element of S8,

_if there exists B g Eﬁ(ﬁ) such thut one of the wvalues of j’fg is £, then E,}Effi
1 )  { 3 _ - T
of values of g f {8 taken Yo be the set of a1] guch g'sa,
NV T
- Y 1,1
It £oMlons imediutely that B(F) = r(g), RIE™T) = D(g), and (£7) 2
If 4 p, then gt i,
'\
TEEORRM 13.26: 4 ana 4L ith re 1ineart-
\ 4 : 4 have the same character with r gard to Iineari:

ty, closedness, Hermi‘ticity
= 0 Miticity,

and Belf-adjointness; if @ and P are {partially)
"‘—-—_-—‘—H—-—,‘_._‘_‘_‘_ — —— — B a—————

adjoint, then g! anq p-1 are algog,

—

Proofs It is apparent tnat a1y - To(-8). Hence G(B—\l) = 1 Ga(-g)] =
= TEG(-6)1 = To(-) - Bo(-p) - (BT, smtiary, 7 @™ ana ()" -

= (/d‘)' These three relations Prove the theorem with regard to linearity,

olosedness, ang self-adjointness, 1p (%, g) = (¢, Pg), then {(g'¢, ) =

1 -1
= f L 1, -1 -
@ °r, prig) (dg™¢, p g) = (£, P lg). Thus if @ and P are partially ad-
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joint ﬁ and P_l are also. The remaining parts of the theorem result in &
sinijar way.

The remcining thoorems of this chapter have spocial applications to
corsuin operaTors to be discussed later.

weieam 13,268, 10 @ is linear, closed, s.¥.. with B(@) densc in 8, then

*
A f and P wre 5.u,, iiNSAT closnd, s.v., with domains dense in B¢
o _______: s 1 y e S e —

o N s
Proofs By Theorem 13.23, P 1s s.7. Sinze G(@) is a G hm., a0y ele-

ment F oin § X S ean be represented as F = F_+ FZ’ where F](‘.& t:(d) and F2 € @G(}Ef)

i

Since a(d") @ Ta(g), To(LY) = @ (-6(F) == 6(d). Hele ros To(g’). IfF is
PN

the element (f, 02, The Fl ig ap element (&, e N g + (@), snd F2 ig an ele-

W/

;s & * 2% .
went (- n, h), h e (g ), Thus £ =g~ §ndafd 0= fg + b, so thel b= -Bg.

¢~ N/

Herow [ = (d*f) + 1)g. Binze iz an ar‘ai’t.r&r’;\r olement in 3, R(Z 4+ 1) =
coa¥ g =1 JONTx . * ok *
DB G+ 1)) 8. IF B is reslaced by g, then, since & =48, R(ﬁfﬁ +1) =
¥ L= = ":; LIV o
D((dg” + 1Y) = s, sun (4 ff a1)z, g) = (B, B) (£, 8) = (g, fg) +

+{z,g) = (5, ﬁ*gj(-,) + {7, g\)\: ﬁ' @+ l)g), Henoe (68 + 1) is Hermitian.

i

i

-1
By Theorew 17,25, (04 45 1} Germitisn, But D((d Y4+ 1)7") = 8. By Theo-

s\
vem 13,18, (60 +1)',f\rs g.a. aAnd S.Va,
PRLs
*
* . 1. Hemos if (P + 1) = (P +#1), then

and by Theorem 13.23, {g }?5 +¥1) is s.8,

. .50: \*

It is veadily S.e‘(m\‘b}'.u‘b (p+1; =F
. Q ‘ : ;
o= F. TPa%L’or‘ ﬂ#,’i’f is s.a., and henoe linsar and closed; since @ and § are

: 3
s.v., 4 }?%.s s5.v.; by Corollary * of Theoran 13.3%, (g £)

rest of the theorem follows by a similar arcunsyt in which it is ghown, as above,

*
Lhat ﬁﬁ/* 15 s.8., and that ﬂ,d hes the other propeT-

is dense in 3. Ths

that (g + 1) is Hermitian,
ties stated.
fH.tf..UR'_lM 15.27. I }Ef ig linsar, closed, Ba¥ss with D{,é) den,—"iti_i;r_l_ 3, theu

H[ (fj B+ 1)‘"1“] T and 1 ﬁ(ﬁ*ﬁ + i)‘lﬂi 1 fwrthermore, (;ﬁ*;‘f + 1)-1 and

ﬁ(ﬁj,@j * l)_ are cloged, ooa..;dﬁj aqd de_ 11_5:_4_ over a.ll S
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Proof: It was shown in the proof of the preceding thoorem that

B8 +1)"! 16 8:7V. and thut its domain is . Let g be any element of § and let
£ = (8¢ +1)‘1g. Therefore £ ¢ D(g'd + 1}, and, a fortiori, f ¢ D(F). Thus
Bt has a unigue value, that is, ﬁ(ﬁ*ﬁ + 1)—15 has & unique value for every g
in 8. By Theorem 135.25, £* 15 s.7.. 5o that B+ 1 1s s.v. fience (87 + 1)
has the unique value E. Now ((,d‘ﬁ +1)f, £) = (,ﬂ'*,di‘, £) 't,\ff{, r) = (g, gr) +
+ (£, £) = ”ﬁf”a + [lefi?, If £ is replaced by (g + 1).113, :t;hen this relation
beoomes (g, (678 + 1) V) = | g(g's + 1)~ Lgl? . I 1. 5y Sommarars
Lemaa, lgll + f(g*g « Dl 2 gty 1) e [ iI‘;}(g‘g + 1)l since tne
1ash term is non-negative, it follows bpat Jeh2 g%s « 1)l and since

that is, gl 2 Ngg'y 1) L)) Raiwe f1(8% + 1)1 €4 aug

s + )72 54, g Thoorom 15,25, (8% + 1)1 ang B8+ 1) are

linear and closed, and these OpSrators have &lready been shown to be bounded
3

the first term of the right member ig non?r&%gative, "g”z = ”ff(ﬁf‘ﬁ * 1)'-18”2:

A,
and defined over aj1 S, so’that the proof is complets,

-1
The operator,\"(ﬁ*ﬁf * 1) ~ has been shown to be Hormitian. Let

W8 0™ « siire g € 5. thon (g, (g 2 1)y _ (8% + 1), 1) -

= | gell? + Hf”?%i_‘o and (g, (7% + 1)1y 2 4 implios (46 + 1)7Lg = ¢ « 0, g = 0.

Hence (giﬁf.%’ul)'l 18 definite and 0 Hig'd + 1)'1m Mg+ )7 5
THBORRN 13,25, Loy g %222 In Thooren 15.26. It 1a obvious that

AFDC DME). 1t bo puon thas D) = DEH) snd suoh that, if ¢ & D),

ja'l.-? = gr, Eu_e;r_t:é'l = 4,

Proof: 8ince ﬁiflcﬁf and g ig closed and linear, E’lc ﬁ Hence
[G(ﬁﬁl)] S G(f). It must be shown that [G(ﬂfl)] = G(#). (Remark: if M and N

are c..l.m. With ¥< N, then Buy element f £ N can be ropresented as f = £+ Ly

Where f. & M ang L8 @M. Since £ & § ang f18 MC N, it follows that £, =1 -t

W AN Therefors £ s (o). 1o it cen be shown that £, = 0 for any £ & V,
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then M = ¥, But it can bs shoim that £, = 0 by showing that (@ MIN = Q.)

Supposs K ¢ & 1{1{,951)] « g(f). ©since K € ¢{@g), it may be repressnted by {k, P
As in the zroof of Theoorem 15.26, any element F of the form {f, Oy nay be re-
prasented as (g, fg)+ <—ﬁ*h, h), where h = -fg. Since h & "), ).’S*,'(fg ig de-
fined, and g & D(ﬁ*ﬁ) = D(,Efl) so that fg = fjlg. Hence {g, B8 £ ’G(,dl)c {G(ﬁ]_)]
and ¥ L¢g, Bz> + Bince <-ﬂ*h, S £ (O c{d), K.L_(—ﬁ*h, hy. HenegK is ariho~
gonal to an arbitrary element F = {(r, 0) and <k, gy, {f, 0>’)\::\0, so that

(k, £) « O for all ¥. Thus k= 0. Since @ is 8.7., fk = Y *fhls completes the
proct ., «..<§' .

THEUR M 12.29. 1r D‘ ig 2 gemi-definite llnﬂar IO“T‘lltlB_'Ll operator, then

g, €)| \/,Eff’ f)(ﬂg, g) for every f snd g 1E\D(,6)

Proof: Gince @ is semi- deflmte {‘Qﬂf -g), £ - g) Qo for £ and g in

D(ﬁ) Henoe ggi(ﬁ’f, g) = (ﬂf £+ ,@fgg g) If the argument in the proof of
it rollows that | (48, €)1 =

Schwarsfs Lerme is applied to this re;atlon,

<

= Vg, £)(Be, ), (Fo, P) &guig 2 o for p & D(B)-

It @ 38 as in ths precedlqg theorer, and if £ is such tbat (BF, £} =
N/

then (df, g) - 0 for,did g & D(f).
:n\.:' 1
(B, 1) = O for @ll¥g in 8. Therefore gr = o, that i, f(0) = £. By Theorem

then £ = 0 and f is definite. This proves

¥ p(g) is dense in S, then, by continuity,

13.25, ﬂhl is(]::j:near. If ﬁf_l 15 SaTes

N\
the f911$§13g

Corollary: If ﬁf is a semi-definite line linsar herrnt:.an operafor with D(,ﬁ)

dense iz §, and if g1 ois s.ve, then # is defimite.

Let A and A* Be lincer, closed, S.¥es with domains dense in S. Lot W(A)

. o C
be the set of slements £ of D(A) such that Af = Q7 let E(a ) be definec analcgous-

ty. By the second remark after Defiﬁiti_or: 12 1% it follows that N(A ) consists of

811 elements f such that (£, ag) = (0, &) = © for w1l g & D(a), that is, of all

elements f orthogonal to R{A). Hence A"y = R(A)..\_. gimilerly, N(4) =@ R{A™).
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This proves
* N
THEOREM 12.20: In the above notation, N(A) = R{A), Ha) = @ R(4),
and 1f A= 4", then N(a) = ®R(A).

——

Appendix IT,
Q.
Let 4 ke 2 linear closad operator in 8. Then G(4),i%'a c.l.m, in 8§ X
AN
and determines g Frojection EA in 8 x 8. {In this dlscuéswon an operator in -
8 X 8§ is denocted by & soript 1e tter, while an oparat@r in § is donoted by a La-

€%
tin letter.} 1% ig desirable o represent E By o\perators in 3.
1 &g ap arbitrary operator in 8 {\S then (L (f, g) = <h, kY,
where h and k are eech functions of f and‘ g\ But if ( is linear, then ({7, .

- £ 0 = > =
A<e, 0>+ Ao, gy <41, &glﬂ % (Alng, Agp8) = KAy f < A g, A, f 4k

21 22%.
whare Aij(i, 3 =1, 2) are operaf;@r’s in 8. Thus A mey be represented by the
A 4 "
erse 1111 A2 L .
matrix It is a;anrent that all A . are linear: if A is closed ’
21 Aop 13 :

2

continuous, B.V., or boun}ﬂed then all ﬁ. have the same property.
ij

Now vuPPosa that C{ is & projecticn PG(A.)’ where 4 is linear and o)oseds

Then Pc_(},_) <{r, gj{-» (h, in) = CPy.f + P g, Boyf + Pyog ), where P, ; denotes

P . Th . .
(Faga)ay O T APy mnd Boe ap L g Fora) <fs 0>= (P2, 1),

In the ,p;'oof of Theorem 15.26 it was shown that, if PG(&)“" Q) = <h, Ah >, then

fo= (ﬁ. A+ 1)h, thet iz, h = (& 4+ 15 lf. But h = P_uf" therefors Pll

- * -
(8% + 1) ang Poy= alaa + 1y71, % Theorem 12,27, Py} and P, are bounded

By Lefinitien 13,32 e © -
» 8a7) =@ T0(4). since Pis(a) ™

1
P =~1 .
G(A} s G(& y 1 UF (!L)U + Thersfore U 1 £, g>=(g, £,
P .
6(4)7 R P8 - Flafs Byig = Byey,

and defined over g,

G(J’x)ﬁ <f: g) =
=P, f - P ¢, -
<Py, 218, = P f + PovE>, and Bota*y<Es &> =

~<(1-P)f+Pg)P i 1— *a *z
22 21 12 ( Pll)g D . Thus 11'11 1 - P22’ P12 P21.
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* .

T anc = - wWrere * SrnT e . **_
Fop = Fyg. and P, =1 P{l’ where Pi;j dsnotes (I—‘G{A*))ij. Since A = A,
* JEe L E -l * * -1 o ) .
B,y = 4 AL+ LY T = P],E’ and P, = A& (A + 1) ~. By Theorem 13,27, P, is

peundel and de=fined over 3; it is apparent that P?E muial aiso heve theso prop-

srliica, Il iz convenisnt to tabulate these resualts,

1 1'\<\

p o 2ty e o Lk 1"
17 % e i) 1o = A (Aa 4 ),(”\:}
* =1 * %

P, = A(AA + 1) P, o= s ant 1Y
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CHAPTER XIV.
N\
COMMUTATIVITY, REDUCIBILITY R
oA
O
In the preceding chapter en important claas of”ppé}"utors vwue considereds

the projections. The next task will be to define ar{l;'.(partially) enalyze another
important class: the unitary operators,’ v
. O8N
Definition 14,1, an isomorphism of{3/is a biunique rapping f-= Of
LT T gV <2 2 2LUnigus mapping

of 8 upon itself which leaves 1nvar1an‘1:z&3¢1 formal 1"tale.t_iﬂc3£§sw used in the postu-

iational characterizstion of g, (Thigf‘;b.'ccords Wwith general usage.) A1l these

formel relations ma be expressed™in terms of the operations af, £ + g, (f, g).
ey be T — ——2 22 8 Operations

Hernice 1_1:”%5 rostulated of & \tary transformation that, for arbitrary w, £, g,
=re _— . & bnivary T IETs 10T Arbitrary

o

\\

1) U(af) = aur, HM2) U(feg) = ve + Ug, 8) (ur,ug) = (£, g).
A\

$
it is evident that\stch an isomorphism £ —a Uf may be looked upon as an operator
—— — e e '.-—.._.—.._-—--—.._.__,,___ ________,___________,____'____._._.-——-'—"_

T. Whenever’é:g_}_s_ desirad te emphasize the cperatorial charscter of an isomor-

O . :
phism (am\}thls Wwill usually he the case) it will be called g unitary operstor.

It is necessary to intreduce gome direct operatorial characterizaticns
that a transformation be unitary,

TEEQREM 14,1, An opsrator U-ELE unitﬂi‘{ and only ir
1) UE.S._E'X" linear, ang closed,
2) Jurl =zl ror all slements ¢ in g,

3) D(U)= R(U) = g.

The third condition hay be replaced by the follewing (which is apparently weaker):
P ~= S— ~—_OWing (which is apparently
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5) 9(U) and R(U) are denso in 8.

Proet: It will be shown that 1, 2, and 3 are necessary and that 1, 2,
end 3' are sufficient.

Neceselty of the conditiones: condition 3 follows from the fact ihat
the transformution f-—» Uf maps S on itself; condition Z follews from part 3 of
Definition 14.1 when £ = g; it is evident from Definition 14.1 that{® is s.v.
end linesr, and closure follows from continuity over D(U) = ([]'L'Eﬂ\- Ug” Ite - g”)

Sufficisncy of the conditioms: frem 1 (l:_nea.ru‘by] ~;md 2 it follows
that lor - vgll = lle - gll . Thus if UF = Ug, then £ = g,,\\so thet U has s s.v.
inverse U~1 which (evidently) satisfies conditions ]\ '2‘, 3¢, Since UF - Ugh =
= fr - g” , U is centinuous over D{U}; by Theoré{n&'\lz.]l, D(U} is closeci; since
D(U) iz dense in S, D(U) = 8. As the sams, Srgu;nent appiies to vt D(Uhl) =
and ¥ is & biunique mapping of & on 1t§slf. Since U ig linear, conditions 1 and
2 of Defirition 14.1 obtain, It iuama;ins to show that (Uf, Ug) = (£, g)« By 2,

this condition holds for f =®:~}\In particular, it follews from the condition
£ fe
(UL Uf_% ) - Ui_ U,f_fF ) = (f+g f+g) Lo, 28 ) tnat & (vf, Ug) =

= R, g} If g is,{ placed by ig, this srgument shows that & (or, Tg) =

= {f, g). This c}xpletes the proof.

Rema}rzlt’e :I. The preceding theorem shows +hat every unitary operator 1s
a \Y;

boundad, \ )

Remark 5. It is evident from condition & of Definition 14.1 that con-

dition 2 of the preceding theorem may be replaced by the (epparsntly) stronger

condition (Uf, Ug) = (£, g)» By Theorem 13.21, D(u*) = 5, so that this condi-

* . _ . .
tion may be writtem in the form (wur, g} = (£, g); since B(U) = 8, this cen

. *® A . i =
dition impliss that vy = 1. Ae the condition D(UU) = 8 implies the condition

ficient conditions
D(U) = 8§, it folleows that another sot of necessary gnd suffiecien
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thet U be unitary is that
1) Uis s.v., linear, and closed,

2) T =1

2) R(U) is dense in 8.

- Romark 3. If U is wnitary, then U'Ur - £, yu'pe - Uf, 50 thet D0'g = g
if g = UF, that is, if g e (V). But UU” is continuous end R U)”\s dense in §,
so that UU E ™ g for nll elements Z. Hence u” = 1. But, {?bm Rem&rk 2,

o'y - 1. Thus “

" - y'p .1, R
Conversely, this relation (rsg&rdless of the uni\tary character of T) is equin-
velent to the condition U™* = ot Hence it thlies that R(U) = D(y~ ) - (0" 3

= 8+ Thus condition 2 and 3 of the precadlng remark may be replaced by the eon

dition .;?;‘
2) tv=mt g
o\
or by the conditioen ¢\J
- \Q\
1 4

ditions 2 and“a of Remark 2) may be replaced by the condition
2") llu f{,a HU el =l for ana elements £ in §,

Those unitery operators which are als o Hermitian are of soms interest
Bor 2. They are bounded (Remark 1), &.v,, Iinear, closed, end their Eermitian
character is expressed by the condition 7 = U*, thet ig, v° - 1 (condition Z
of Remark 3), Conversely, the condition [% o 1 implies that D(U) = 8, so that
the propérty of being Hermitian implies the property of being S.H., 2.V,

(Thgbrém.ls.IB), and thersfore alsoe linear-and cloged, Thig leads to
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The set of unitary operators U whick are also Hermitian

2

iz oxactly the set of Hermitian opersalors such that T = 1,

b

{Pranf above.

2 2 11
_ _ T+l +2U+1 _ U+( 53U
Romark.  Since (_%%Q . ZU+1 - (EZBL ) , the condition U° = 1 is

*
} =T~J—§£ . Honce the corrslation

U+l

)
“

sguivalent te the condition (
a1 N\
+
= = E, 2ZE-1=1 ':\:\,

"\
sete up 2 biunique correspondence betweern the set of all ursl ey -Hermitian
2%

)
operaters U and the set of all projecticns E. O
~m§
9inee unisery opsrators were defined as isgwirphizms of § upon itself,
N
the set of all unitery operators foruws & group(\;. ence
b . . PN
i 1 is unitary, « \J
")
-1 &N
2) U is unitary slong with T, NN

3) UV ip univary alcng with ¥ and ha

O o
(It is evident that these profchlitions mey be readily verified by mesns of any
otker ore of the abovo cimrgcterize_tions of the property of being unitary.}

I ¥ ard V areydnitary-Hermitian, then UV will be uritary-Hermitisn

&/ * .
TV = YU (sino%ﬁ.ﬁf, g) = (£, VUg), so that (UV) = (VU). Let the projections

Eend P ccrrcsi}ﬁnd respectively to U and ¥y let E = Dy and F = Py; assume that
N g

U§+l _ (2E-1)é2F—1)+1 ~1 -E-F+ 28F = 1 -{B(1-F) + F(1-E)]

= BF + (1-E){1-F)} corresponds to UV.

ON\“‘;
Uy = W; %\}16}“1 G =
Since UV = VO, EF = FE, snd M and N con-

mute, But
E(1-F) + F(1-B) = Pryeo ), nie )1
o+ (-B)(-F) = Py (o w)(e N)1,
50 that

G’Egm@mLN@Mnjﬁm,@MNQMT
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It is now desirable to introduce the concept of commutstivity, If 4
énd B are two 5.v. operators, it mey well happen that D(AB) and D{(Ba) are dig-
tinct or even empty. It is & case of particular interest when BAf and ABf exist
and are equal for overy element f in the domain of one of the cperators, say 4.
Fer BAf to exist for all f ¢ D(A) it is necessary and sufficient that D{B) > R(4).
For ABf to exist for all f € D{4) it is necessary and sufficient{“that D(B} > D(4)
and that B & D(4) for a1] ¢ € D(4). If under these conditioé:{@* BAf = ARf for

£\
avery £ £ D{a), it is apparent that it cannot be smid t}qgé:‘lB = BA, for these

twe operators may have distinct domeins; all that ca.;{:lﬁ'e said is that 4B o R4,

Bocause of the conditiens on D{B) it is sdtvenient to assume that

D(B} = 8. In this case it is possible +o asxexztt (conversely to the preceding
remark) that if 4B D BA, then Apf = BAf £8r)all £ € D(A). But 1t would imbro-
duce an undezirsble element of asymle,ﬁ%fy"between the roles of 4 and B +o g8y

on this basis that 4 and B commute’:f'SyIrmetry is retained between 4 and B in

Definition 14,2, EE}\_@._DE B be two S8e¥.0perators. 4 and B are said
to commute if either 1) D(AB*\;S and BA D AB (io_i,ﬁz{t_ig_r_- £ & D(B) it follows
that Af € D(B) ﬂABp?‘ﬁm),g 2) D(B) = 5 and AB > my (s0 that for £ & D(A)
it follows that Bf;'{;DEA) and ABf = BAT),

Remark:f’\If D(4) = D(B) = 8, then D(4B) = D(BA) = S and sither of the
conditions«giﬁ\"'f;he Preceding definition implies that-4B = BA, this being the
cusfomary definition of commutativity, Thus in the present extended sense of
the word, the condition BA o 4R may also bs utilized when D(A; = § regardless of
the nature of D(B); and the condition 4B o pa may always be utilized when D(B) = 5,
regardless of the nature of D(a}.

It should be noted thet ne definitien of commutativity has been given

in the caze where D(4) f{ S ang I(B) f/ e This case ig at present insufficient-

Iy analyzed, though in certain Special cases (to pe discuased later) satisfactory
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definitions cap be given.

THEULEX 14,2, If A is a 5.v. operator, it follows that

1} A& commutes with 1.

2) If A0 = O, then A commutes with 0.

3} If D(s) = 8, then A commutes with A.

4) If A commubtes with B, if .B—1 is 8.V, (_S_tz thet Bf = Bg only when f* = g), and

if eithor D(4) = 8 or D(B™') = R(B) = §, then A comnutss with ¥ .

¢\
5) It &4 commutes with B and C, then A commutes with BC. ‘\'\
6) If A is linear and commutes with B and C, then 4 comaﬁufés with aB and B ¥ 0,
N
7) If A4 commubes with Bys Bps +e., if B= lim Be (i}b., Bf is defined if and
- n—00
only if all B f are defined and lim an ex;’aQ&ss, and in this event
o n—=o ¢
Bt = 1im Br_f), and if oither D{a} = 8 mAd)A is continuous or D(B) = S and

n—<o .
4 is closed, then A commutes with B %N

ad

* Ry . . *
8) If A commutes with B, if A end B, are s.v., and if either D{a) = D(&4) = 8

e *
or D(B) = D(B') = §, then A{'cdmmubes with B .
o) -
9) If 4 is linear, continuoys, and commutes with B, and if B is s.v., then 4

commutes with E.

N

Proofs Pg.r\t—;s'\'"i and 2 are evident since D{1); = D{0) = 8, Parts 3 to 7
are readily vez;{}‘iéd from Definition 14.2; in each of these parts the case where
D(4} = 8 (xggﬁii;ng the use of condition 1 of Definition 14.2} must be counsidered
separately I‘;om the case where D(4) # 8 (requiring the use of condition 2; note
the remerk). Part 9 follcws at once if D(4) = S (condition 1); but if D{4) £ 3,
then D(B) = S and B = B, so that the remsinder of part 9§ is immediate., It re-
mains to consider part 8, where, by reuson of symmetry, it muy be assumed that
b(B) = D(B*) = 8. Let g be an element of D(&*). For arbitrary f £ D(A} it fol-
lows that (£, 3%a%g) = (Bf, A%g) = (AR, g) = (BAf, g) =(af, B'g). Eemoe there

. * *
exists an element g = B*a%g such that (£, g ) = (Af, Bg) for all £ & D(4).
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* * & _* * ok
But this last condition implies that B gEDA )and A Bg =B84 g. Hence
* * *
AB >Ba.

A refinement of the concept of commutativity is given by

Definition 14.3, Let A and B be two B.v. operatorg, A and B are said

* . #*
to commute adjointly (c.a.} if sither 1) D(4) = D(A*) = S while 4 and & com=

* * p
mute with B, or 2) D(B) = D(B ) = & while B snd B commute with £\

Remerk. If D(4) = D(A™) = S, then, by Theorems 13,2 (Bapplied to a%)
"\

and 15.21, both 4 and A" are bounded; if D(B) = p(8") =3, then B and B" dre
bounded. If both of these conditionn obtain, then,"ﬁg:bondition 1 of the pre-
ceding definition, AB = BA, A"B = BA", and by condﬂ:ion 2, 4B = B4, AB" « B'A,
The first equations of these pairs are the s&z’qe\ the second equations arise from
each other by applying the operation ¥, (It is evident that (A’Y) = v %" for
bounded operators X, T}. Thus COI’ldl'blen 1 of the precéding definition may always
be utilized when D{4) = D(4") = § Yogardiess of the mature of D(B) and D(B");
and condition 2 may always be."'u,\‘blllzed when D(B)} = D(B } = 8, regardless of the
nature of D(4). ,\\

The present dégiéition of c.a. does not apply in the case whare
D(4) # 5 and D({ Y‘(\S Weo will see later that in these cases too a satisfactory
definition of‘a.a.. can be given., Thus ¢.a. will turn out to be a more natural
notion t@eomutativity itself. 1In this aspect, Theorem 14.5 and the remark
which precedes Definition 14.4, sre quite instructive,

THEQOREM 14.4, T4 _i_js_g._i.v_. operator, it feollows that
1) 4 c.a. with 1,

2) If AD = 0, then 4 e.a. with 0.

8) I£ED(A) =D(A"} = 5, then & c.a. with A

. . ~1
4) If 4 c.a. with B, if B ﬂ 8.V. {see Theoren 14.2,part 4}, and if either

D(4) = D(A") = g or D(B" } = R(B) = D(B *'1) = R(B%) = S, then A c.a. with 5
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5) If A c.a. with B and C, then A c.a. with BC.

6) If 4 ig linear and c.a. Wlth B B.nd c, then A c.a, with aB and B & c.

7} If A c.a. with Bl’ Byy s if B= lim Bn (se¢ Theorem 14.3, part 7), and
* n C:*
if either D(4) = D(A") = 5 or D(B) = D(B ) = 5 and A is closed, then & c.a.

with B.
* *
§) If A c.a. with B, and if B is s.v., then A c.a. with B . 2\
9) If 4 is linesr, comtinuous, and c.u. with B, and if B is s(¥u, then 4 c.a.
N e )b
with B. W

Remurk: This theorem is obviously analogous ’@::Theorem 14,3, How-
ever, part 8 is strongesr here then there; two applic;&iéions of part 8 (ance %o
B and them to A} lead to part 8 of Theorem 14'\'§;\\’cie direct analogue of part 8
does not hold for commutativity itself, Ih‘tf‘afct this is the principal reason
for the introduction of the termlnolcgy) ¥oommutes adjointly™,

Procf: The proofs of pa“r"Es' l to 7 are the same us in Theorsm 14,7,
In particular, tre condition ];F(‘;}} = D’B.*) = 8 in part 7 implies that A is bounded

N\

and therafare COPtlnuOhS. \JI1 part 9 it maey again bo assumed that D(4) = D(A ) =

= §; since the (,ondltlon D{B) S implies that B = B, the analogy is complete.
(N

It remains to cm{ﬁ@der pert 8, If D(B) = D(B } = §, then B is bounded, B is

8.7, and B= BSB?G*. If B ig replaced by B , then in Definition 14,2 the opers-
~\ 3

* I -
tors B a.m‘\B are replaced by B and B = B, that is, no change is mads. If

D{4) = D(A ) = 8, then A = 3= A , and it must be shown thet if B commutes with
* * * ) . * ¥
4 snd A, then B commutes with 4 and A , that is, with A and 4 = A, But

this rollows directly from Theorem 14.3, part 9.

It is of particular interest fo discuss the gitustion in which 4 c.u.

with an operator which is either a projsction or is unitary.

THECKEY 14,5, An omerator 4 c.a. with a unitary operator T if and only

. -1
If 4 is inveriant under U, that is, & = UAU ~.
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Proof: Right multiplication of 4 = UAU_1 with U givea AT = UA; left

A . . -1 ., ~1 -1 =1 * * *
multiplication with U gives U "A = AU °, and as U =U, UA =AU, Thus

the condition is sufficient, Conversely, if A commutes with U, AU D UL, and

in particular £ & D(4) implies Uf € D(4). If A c.a. with U, then this asser-
¥* -

tion holds also for U = @ l. Tt feollows that D(4) is transformed by both

U and U—]_' into part of itself'; therefors it is invariant undsn¥, and so 4,

and UAU™" have the same domain. Since AU D UA, A > UAD 1,. Ghis sives 4 = TAT™,

If E is a projection, then E = E', D(E) - D(&" ). > s and the follow-

ing three conditions are equivalent: A ¢.a, with %{,A cor:mutes with E, and

AE o BA.
@
Definition 14,4, If Ac.a. with E T By (note the preceding remark),

then B and M are aach said to reduss A.I‘f

e/

I@‘M If A &ﬂd A .B-‘I'G S Ve Wlth D(A ) dense in 3, then the

follomng i‘our rolations +ogethw.const1‘tu‘te & necessary and sui'Ticien® con-
— T s ——t 7 e ISR Con a2 i B

M that A be rsduced by»{i’.\~ PM:
1) Ef € p(a) for r g D(J})\

2) Ef & D(A" ) for f{ D(& ),

3) Af & M for fe\M * D(4),

1) Aferb?fau.D(A)

'"'ETﬁQUf of necessity. Condition 1 is Immediste. Condition 2 follows

dir ectly from Theoren 14.4, part 8 (where 4 and B ars replaced by B and 4).
If £ € ¥+ D(4), then m =1 and A = pmp - FAT, 50 that Af & M, Condition

4 follows in an analogous manner,
Proof of sufficiency:; 1 p € D(4), then (by 1) 2 is in D(4), M, and
*
Similar'ly, if g = D(A ), then

* * *
HBe) - 4B sino B~ m, (s, g) - (e s 8) = (aEf, Bg) - (mf, 4'%g) =
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= {f, EA*E%) = (f, ﬁ*EE) = {Af, Bg) = (EAf,g). Therefore (AEf, g) = (EaF, g)

for all £ in D(4i) and all g in D(A*). Since D(A*) is dense in 8, this re-

lation holds for all g. Hence ARf = BAF for all £ & D{4), so that AE D Ea,
Remark: In the preceding theorem the condition that D(A*) be dense

in 8 may be replaced by the condition that D(A) be dense in 8.

Coroliary: If A and A arc s.v. and defined over all of then a
necessary and sufficient coandition that A be reduced by B = Pm*i.f,_ that Af & M
) —_ Ko
and 4 £ & M for © £ M. « \J
Proof: This corollary is merely a specinl cagd of’ Theorem 14.5 in
w7
which conditions 1 and 2 are necessarily satisfiedand in which conditions
3 and 4 reduce to the conditions stated. .*'.\\"

W

.

Theorem 14.6 and this sorollary shew’that A and A may be regarded
as operators in merely the space M, 'i’hi{s tho behavior of A may be analyzed
by means of subspaces M rcducing N

THEOREM 14.7. Ira Eis_«k linear, clesed, and s.v. operator, then

It}

1} A is roduced by E = P\h‘ and only if it is reduced by 1 - B = P_ ).

2) If" A is reduced by\a‘very E& = PMgg where o ranges over a set I (of indices
.\”‘
oA}, then & ¥xf~dqced by

#

N =TT
3 M a
a) Pm, where e

\V' whers P=1i..., Mﬁ, ver] {where o _J;ZIEI._[] rangss over

81l of I},

Proof: Part 1., By Theorem 14.4, parts 1 and 8, if A c.a. with E,
then it c.a. with 1 - E, and if A c.a. with 1 - E, then it c.a, with
1 - (1-8) =
Part 2b. This follows directly from parts 1 and 2a since
Ll=o (1T eu))
*? ] Aed *

Part Za. Gase 1. T contains only two slsmeabs, say 1 and 2. Since

[oo., M
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A c.e. with E] and E_,, it follcws by indueticn from Theorem 14, 4, nart 5

E

EE , EEE

that 4 ¢.a. with euch of the opsrators R obys BEE

1+ «++» » By Theorem
13.7, thiz sequence has for limit the projection P - By Theorem 14,4,

part 7, A c.a. with PM]_‘ M2e

Caso 2. T is a finite set, eay {1,...,n). This case £0llows immedi-
ately by iaduction, N
. O
Cage B, I iz a countably infirite get, say (1,2,....)\.“\ Let m

N
= Z M . Then qu z Pml ? is g seqdenue af pI‘OJE‘\C'b,l’O*lo which, by Thea~
rem 15 10, has the limit P , whers T = z Byo_@,}sr-) 2, 4 c.a. with aveTy
m TRV
Pmﬁ’ 80 thet, by Theorem 14.4, pert 7, & c.a. "trith’Pm

Case 4. I is a non-countabia get, L<1g a1l posaibic (finite or infi-

nite }sequonces M, Mos. s «e. be forwed £ cm ine set of sets My,e Let f be an
* by

element; of § and iot y be the g.1.5, cn‘* ell the mubers IIPM oy - £h cor-

oyt My lens
. ™ . N =
responding to all +ths s2guences Muc;, M“‘ﬂ.’ +++ +» It is appurent that ¥y = 0.

Let n be & positive integer, fi”here 9xists a sequemncs Mot”" M:\’"’ se. such that
¢ \J 1 -

\ ]
1 N ) , .
”PMJ, MD(M“.*.‘ i < v+ o QL& A _/32, ++s bE any sequense in I contairing all
“he indices di (n, 1:=l>2, ser), and lot M = L{qj-Mﬁ;... - Then

»
. N/

¢ < 1
M‘-Mélf‘ M/a ...C‘:M:y Mma..,flPdffl “PM% Mﬂ'.. I_““:'Y“'?l-«. (Here, and

in what i’ollomis.‘, \U.SP is mada of Theorsa 13, 8 and the discussion of the rela-
i = S X -
tion & = Fmpr:ecedlng it} But I P f I ;7 , and as |l p.rfl g independent of n,
3 . '
e =y .

I

It will now be shown that PMf‘ PW £ for all £ in S. Iet A be an ar-

bitrary slsment of I, Since the sequence A

,,_.

i*/%gs »es COnbaing all the in-

dices d\? s 1% follows that ”PM ,E‘“ =] M M H,g .?H =¥ . Butf PM;E‘||= ~ , SO
that ”Pﬁé M.E‘J'! = ”Pﬂf” « By the cerollary to Theorem 13.8, this relation im-

)‘ i
Hli= het = i & - 1t 15 -
plizs thet PM): ]l-l'f PM' and, a PM Mf‘C M Mc M - PMf’ £ M But this con

dition holds for ssoh A in I, so that Pl W and p W S Bfe But WM
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=
and Pm = PM' Hernce P?ﬁtPM 931’ and therefore P??If = PMi‘.
*
Let T and £ be two clsments of 3, let o and * " pe the respsctive

[ H

sets of indices determined as above, and lst ;’51, Iﬁg’ ++2 DE & BEQUENCE CON-

*
sisting of sll the indices o and « . Then Ff = B, f and PMf*= Pyt

*
Now let f be restricted to D(A) and let £ = Af, The preceding relations

]

me and P,A.f‘ A.f‘ By Cuse 3 and Thegtem 14.5,

B Af; hence By f € D{A} and ame = Pm&f} where f is

assume the form PMf'

PMI' £ D(A,) and APMF

an arbitrary slement of D(A). Thersefors APmD Pmﬂ, A(Qg.:fﬁhtes with P%‘l’
and (by Lhe remark preceding Definition 14.4) A Ccan. ".%q':‘[:h P ..
A T

Rili 14.8. Let T be & soparabls subsel iy S(i‘or example, & se-

W

be a sequehcs gf\brouuded operators defined over

quence j, and let A,, A

2, “re
A\

all of §. There exists a separable c.l.unM containing T and reduzing sach
- —— —_— - — gy —— m——— s .

of the oparators Al jxg, ven (If,S};'ié itself sgeparuble, then M = § and the

theorem i trivial.) A~

- P 4

Proef: Let [ , T .&m*\ be o sequence of elements of T dense in T.

l! K’\s

If 2 c.l.m. M iz found WP!ich comtaing fl’ f2’ weu, then M O T zince M is
closed. Hence it w\ﬁuff‘lcne*lt to consider thoe seguenco I 1’2, aie e
Qr (1), ves © X(P) is countablis, wherse

The sot\iq»ol expressions X

n=1, 2, .~\'., p=0,1, 2, ..., wherse ! {(j =1, +eo, p} is 2n operator i,
A1 ; . .
or an ob@'ator A, (1 =1, 2, ...}, and whore X( ). e " (p) represents the

operator 1 if p = 0. It will be showr that [Z] satisfies the conditions re-

guired of M. Tt is apparent that frl £ [4] for sach n. By Theorem 12,28,

[Z] is separable since the set 4 is soparabia, Il remains to show that if

f £ [Z], then A.f and A’_kf are in [Z] (ef. the corollary of Theorem 14.6].
i T

*
then Ai.t’ and Aj,f are

oo

* . . =3
Kow if f £ 7, then AL and Al arc iny: iffelzi,

*
* P = 4 [d i
in {41 since Ai and Ai are linsar; a4d if £ & [3], then Aif and Ail are in
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[Z2] since Ai and ﬁ; are continuous. {(Nobte that closedness would be insuffi-
cient.} This completes the proof .,

THEOREM 14.9, Let T be a separable subset of § (fir_ éxample, 8 sc-
quencsj, and let Kl’ AE, P_‘?_f‘_ Sequence of limsar, closed, 8.V. operators
in 5. Thers exis_ts & separable Slum. M containing_ T _agl_cif_e_d_u_g*n_g_f_a_c_}l of

N
the operstors Al, 32, ree .

2\ \
Proof: As before, it is sy FPizient 4o consider T a§ b’:’.‘ll’lé & seguence
fl’ f‘z, *+- + The operators of the Sequence U P_{, F < ”(ﬂ ) G(An)’ -
£
are bounded and defined over 8 X 3. ({gor. Defll‘l"tl@ﬂ\lé 11 and the remark pre-
ceding Definitign 13.8), ILet [Z] be the ssot co\Qatr?lotﬂd as in the preceding
proof with respect tg the sequence of p01*1+<~\(f s 03, <f,, 0>, ... . Then

[Z] reduces each of these operatar s and b’y the corollary of Thegrenm 14.5,

<7, 8> & [4], then T (r, g>= <~g~r> Py <f,e> =41, 0), ana PAf,gd=

=<0, gdare all in [z]. A
Let M be the set of aq.} elements £ such that (£, 0) ¢ [Z] and let
N be the set of al1 elenmnts & such that <0, g% £ 2], 1t ig apparent that

M= I‘{ (IZ] X): sin- s X is & e,l.um., ¥ ig 5 Colimes sinee 2] ig soparable,

Mig Separable; i{g}akuslv containg the elements i‘l f‘z, vee o It remains
to show that E‘reduces Ays Ay oo 1 (1, gy & [%], then, by the last
NS

aSSHI"t]_OI\()f “the preceding paragraph, f £M ang E EN. But ir £ ¢ M, then
<, 0> = [2], o, £ = [Z] {(by the opsrator ), and r ¢ ¥, Hence I < N.
It follows similarly that u SN, so that M = §, Therefore, if <f, g> & [2],
then £ and g are in M, Again, i {f, ¢3¢ &[Z], then (r, gy L ¢k, k) for
every element (h, k) & {z]. Therefore (f,h) + (g, k) = 0 ror every b and
kin M., Since ¥ is linear, 0 £ M. Horce (£, n) + (g, Q) = 0 for 411 h in M,
and £ & @ M, Tt £ollews similarly that gEa@ M.

Let £ be any element op D(Ai)g Tnen {F, Aif> is any element of G(Ai)-
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Since [Z] reduces P

a(a,)” Tota )" py K2 A2 = Fry

G(A )<f AT =

t

Pry] < A f2 . Therefore Pry <f £,5> & 6(A.); let P (f, 4.1> =

i

{e, Aig> . If{r, &if‘) is resolved by Theorem 12.23 with respsct to [Z]
then, since (f, Aif) and one component are in G(Ai}, the other component is
elso. Eence (f, Aif> = (g, Aig) +{h, _Aih) , where (g, Aig) g [Z] and

{h, Aih> £ ®Z]. Therefore f = g + h, where, by the preceding ';;ragraph,

(NN
g e M, g¢ D(Ai), and heE@M, he D(J&i); likewise A.I = ag_:g + Ah, where

Ag g Mand AheON. Since M is a c.l.m., it determfnes a projection P
. S\
3 > F o= = = ¥ iZino N

inge PP = g, Pl & D(;‘Li) and ﬂiPMf Acg PMAif {2inze Aee M), As T
— - - i N2 o

2 an arbitrary element of D(.&i), it followsg ;@&at AiPM PMAi, so0 that Ai
and PM commute. This completes the pr‘ooi".":f

N/

THEOREM 14.10. Let 4., A, .m”be & soquence of linesr, closed, s.v,

e

operators in 8. Thers exists a set oF soparable and pon-smpty c.l.m.'s ¥,

( o ranging over & uultable g J (of indices)) such that 1) if = # [

tkenh and Mﬁ' ure orthogﬁn\al 2) [eaes Mg s veed =8 (Dk_l_r}_[...] ranging

over all of J}, and Sl each set M, reduces sach operator 4.

Proof. Ib‘e.\sets M, owill be constructed in such a menner thet J will

e o —
o2& a set of Gahv};or's ordins} numbers, namaly, the set of all nunbers o < d‘o
3

for a su«zxga”}aie number & . Therefore the sets M, witl be defined by trans-
3 o
finite induction; & (snd hence J itself) will be determined only at the ond
0

of the trocess, The transfinits induction is as follows: suppose that, for

cach o< o, M has been definsd so as to satisfy conditions 1 and 3 of the
o

theorem (for esach o < K, M, is separable, non-empty, and reduces sazh Ai_).

Let Sy, = [ecasM, ,+..], where o ranges over all crdinal nmuobers less than

A . If § =25, let I be the set of all ordinal mmbers o less than k.
o

Then condition £ is also satisfied and ths proof is complete. In this case
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the induction stops at the number e

But if 8, ;! 3, then, by Theorem 14.7, sach Ai is reduced by@Sﬂa
) ]

&

By Thsorem 14.9 there exists a separable and non~empty c.l.m. Mao(: @8,

which reduces each Ai. Thus the sets Mm, of\g X sutisfy conditions 1

and 3 and the entire set of sets M s defined by transfinite induction,
Since 8 itse)f has an ordinal numbsr 4% and since the Gr'g'\inal TiUm—

ber of [..., M, ., ee], ®= X is not iegs than R the progess can reach
¢\
. . “ o=
ne oupber A =M ., Henee it must stop at some number d\‘c} o«o =, and

when it stops, 8- = 8. This completes the proof. o 3
=]

¢

o\
fsmark, By Theorems 12.26 and 12.27, eoch et M, is & finite-dimen~

sloual Buclidean space or a Hilhers spaces., (MQ& accurately, sach set M is
&
isomorphic with such a space, But, for thoysake of crevity, the words "iso-
morzhic with" will always be omitted if“whav follows.) 1If the sets M are
a8 =
o s .
infirite in number, they may be classified into mutually exclusive, countably
infinite classss. The sums oi‘<the sets Md\ of each such class may themzelves
¢\J
be used as zets M, and t\c@y are all Hilksrt spaces. TIf ths numbsr of sete
\
Mo\ is finite, then § i.\é"ﬁ'éparable and the theorom can be satisfied with the
use of only one sg:gt;\'}.‘.[d\ = 3. In this caze Mc‘\ = 8 is a finite-dimensional
1z 4 - -
Buclidean spag€ er a Eilbert BDACE.
¢M‘;
B . - -
ll\m"s\: it turns out thst, unless § iy a Tinlte-dimensional Ruclidean
\/
space, e}l ths sets M, may be chesen as Hilbert: spanes.

Theorem 14,10 shows tihat any finits or counbable finite s=t of linear,
closed, &.v. opsrators may be simultanecusly reduced by a system of separable
and non-empty c.l,mfg K, having propertiss 1 and 2. It is therefor e of inbe-
rest to discuss the naturs of such systems M, and the way operutors A rediuced

by them are determined by their behavier in +he individusl sets M, The fol-
A,

lowing theoresms contributs to such a discussion,
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It should be remarked that these theorems (particulsrly Theorem 14.12)
will b= of use even in separable spaces whers it will sometimes be of im-
portance te construct operators A4 from thelr contractions in ¢.l.m.'s MO( {of

the sart deseribed above) which reduce them.

It will not be assumed in what follows that the sets Md\ are either

gseparabls or non-empty.
Q.

T T T === 0\

(of indices), guch that 1) if c‘x% p s then M and M, are orflipgonal, and 2)

- - fruienll ——— — —_—— N

R
N

[ees, M,, «..] =8 («in [...] ranging over all of J).

L &
Then every elemeunt £ in 8 has a unigus repr‘es“é;cation of the form

= £, L € M, whore £ = O for all & E J\\asme from a finite or
ok J - T
sountabls subset, and where the sum of the nén—va:ll hing elements f is con~

vergent, Incidentally, f = PM f and ”ﬂﬂf— Z”f
R AL J

2.t ¢

Conversely, a meaning s.ttachds Ecl each series W &g e P e

for which » Hfd\” is finite: }d\ = 0 for all <t € J aside from & finite or
ol & I R X 4
countabls subset and the sum\:rf the non~venishing elements :E‘ is convergent.

€ M,

Proof: The 1ast\part of the theorem will he proved first. If

S
Z”f ” is flnlt\ \then the relation ”f ” > £ holds for only a finlte set

«®{L &g N
i 1 1 cy
of indices o .4 Mf & is taken successively to be 1, Tag s sers then it is

evident tl%%\j ch(” ,v{ 0 and £ % 0 for only a finite or countable set of in-

dices o . Let the indices of the non-vanishing elements f be denoted by

0"1, 042, ves « If this sequence is finite, the question of convergence does

not arise. If it is infinite, let f,, = & \;, where &, = Hfﬁﬂ and

1 T n. #sgt and Theorem
Y, = f,. . The elements P_, "Pg’ ves TOrm an Q..
1 [ fO\L” Ay 1

12.16 leads to the result stated.

P o= 15 ] bvioug if = oK, for
As £ = £ =Z'f°% - £ d\zj‘ mfo\ {this is obvi 5
+ L
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some 1 = 1, 2, ..,, bub it is L-uz “or o ;( o{l, 0(2, +ss too, sinze then

f, = 0; in what follows the seguence Xys Xgy «-. may be finite or infinitel,

: 3 - 3 .
and as fcxg& Mot,f:@ Md\ for c(i ;{ &, it fellows that f f‘x @MU( But

]

2 2
‘s evi : - S a
£ € MC&. Hence P-Mg‘f fc,K - It is evident that) Ei 2 kf’iH :i ]ai; , Sso

i

. 2
that [If ”8 “’szm ” Z” fo&;.” = ZHf“HZ » This proves part of the first
i i T ohed

esssrtion of the theorem: the uniqueness of the elements f, in the(represen-

N
tation f = Z .‘f‘ for given I, and the expliocit formulae concgrging them., It
chJ NS ©

+ - v A

remeins to prove only the existence of such & representation.Tor an arhi-
£ %G
N

trary I, m’\i'.
If £ & 8 and if By f A0, let Pyf = sﬁmtfi, where a JPM £l und

t‘
-n—”-— The elemfmts Y form &Il\\}l. set. By Theorem 12,11,
Sorollary 2, e} 2 z Z I (e, tﬁ‘)f LJ OJ W= Z ”P f ” The last sum-

mation may be ex‘tended aver all A& J s*'nce PM f =0 for those indices =

™

for which \¢ was not defined. Hence ) E ”PM f” is finite and the argu-

\ REJ o
ment above shows that there exists an elsment f£1 = 2 P £ {let f.=
N xeg M«
= Pﬁ:‘ E Md\) and PM:"' ‘?mf' Therefore PMO\(f‘ -f'} =0, £ ~ £ 55 ortho-

N

sonal to ¥ for each'p\iné Js £ - £* is orthogonal to [..., M, ...] =8 and
~G
I -ft =0, This’\o\bmpletes the proof,

THBEOR B M 12, Let the sets M . &, be as in Theorsm 14.11,
—-——t-——_.._._. —

Let A ‘_b_e_ggoperator in § which is linear, closed, B.¥., and reduced by each

set M, . By condition 3 of Theorem 14.8, Af ¢ N for f ¢ M. »D(4), so that

A may be considered &s an operator in MG( as long as only elements of ¥, are

considered; when A is so regarded it will be denoted by A Arx is thus the

contraction of A over Mat- D{A). The following sssertions are valids:

1) Z fas Ta & M, (see Theorem 14.11), then Ar is defined if sud only

all elements Ad,fq_ ars defined and Z Hﬂd\f ”2 is Pinite; in this event
A - TTeleT T
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At = 2 AE.

ket

2} Eech opsrator A is linear, closad, and s.v.

3) Conversely, if in cach set M, there is given a linear, clossd, s.v.

operstor A, , there exists a unique linear, closed, s.v, operator A in

S which is reduced by esch sef M, and for which A, = A for all « € 4,
i oo | 2 2 2 \
Prool: Part 1. Since ](f, fry ” = !Ilf” * “I“” (see\Dgf’inition
AN
13,1), part 1 may be reformulated in ths following mannoer: #heNeTements

{f, AF} coincide with the elements Q; <f«u A&feo, £, .efhl;;", whers

12 Qe
U{%H\/f&, 82O 18 finite, Ir Theorem 14.11 is anfiled to the space G(A)
lustead of 8 (see Definition 13.2; @{4) is a c.}{&}, and hence is a space

to which Theorem 14,11 may be applied}, it fé:t;}aws that 6{a) = {..., G(Aﬁ),...].

But A, is the contraction of A over M DAY, Hence (in an obvious netabion)

G4, ) = (MC&X 8)+G{4). Thersfere "..}.’”

[oeaGla e vond = oo, QX EPGA), oon] = ([oen, M, o0 ] X 8)-0(4) =
Py \.
= (8 X 8a(4) = c{a).
N “)
Part 2. Sig:{*éé"G(A) end M, are c.l.m ‘s, 50 alsc are M X S and
G(.&.&} = (Mﬁ\x g)\sﬁa) Heaco A, is linear and closed. 4s 4 is s.7., its

contractiog;\ﬂ;'is also S.7.
/ -
Part 3. Corresponding to the operators &  in M, (o« ranging over J)

there existz a unique operastor A satisfying part 1 with 4 = Rc\ inasmuch as

it was shown in the proof of part 1 that this condition means merely that
G(AY = [a.., G{be)’ v..], and this in turn exactly determines G(4), that is,

A . Let this operator 4 be dencted by E. Any operstor A of the sort de-

scribed in part 3 would satisfy part 1 with A = A  ; therefore it remains

marely fo prove that A satisfies part 3.
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3y 3 Pt e T L Penods
48 G{A) iz & c.l.m. by definition, A is linear sl olosod; part 1

shows that it is s.v, (Theorem 14.11}, If I € D(A), then 2ol & = f’a £,

f € M_ . By spplication of part 1 to any clement fIlra (Red) it o' Lows
., o v i

that Jﬁ}:5 € D{a) and if, = a,g 5 - But PMA.:.“ = £, and es AF = >—-3 £,
Il [ S B
ﬁm £, € Mok » The relation PM af = ;&;,1 f;'a is obtained i o simllar mannor
},& -
{by Thesorem 14.11}. Hence PeDn(a), AP, I = &, £, = PM Af e sONChut A
MB '}’b L i
commibes with Py, and M, reduces A. This condition voids A } 3 €,

It has already been pointed out that the contraction Ol ﬁ By T M *DLA) is

ﬁﬁ « Therefore & satisfies part 3, and the prool 1§\Gonp1a;t.e7.
The above deccmposition of an aperator ANM 8 into opurators AL in
. A
M@ is simply related to the various operatiﬂhs"which may bu performed with

N g'
A on the basis of the definitions of 'tnlﬁ vend the prezeding chupter. These
relationships sre enumerated in ”.7;

THICREM 14.13. Let the.ss =, i KE J, be as in Theorsws i4.11

M
————— —-—-—--—-—.,,r—-—-_._. £ S L e s e

; T\
and 14.12; 1ot 4 and B be twc)linesr, closed, s.v. operators each of which

is reduced t?_‘y_' sa.ch _s_hﬁk_tH 'Mm ;5. 1st ABg and Bo\ be their respective conbtractions

over #;D(a) znd 4 DE) (seo Taeoren 14.12). The following ussertions are
e

valid: \

1) ACB&é‘ﬁnd omly if A < B for every oe g,

2} A &lﬁartiall- udjoint to B i and only if Ad\ is partially adjoint to

Bok for every o € J.
* , ) BT
5) (& ) existe and is sgual to (A)" for every o e 4.

4) A has a 5.7, inverse if and o*ﬂy if sach A_hag a s

=1
5.v. inverse; (A )ok

exists and is equal to (Am) for every o g,

5) If K is any one of the six classes K'L ces, KG snumerated below, then

A belongs to K if and only if Ay belongs to K for every o € J.
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Kl’ ey KS consist of all operators which are respectively Hermitian,

gemi-definite, definite, projections, s.a., unitary.

6) A is bounded if and only if each A, is bounded and the mmbers HFADJFI,

& & J, are bounded, _1__1_1_j:l1_1_s_ event, e fi-é;.g. I!i AOJH.

Proof': Purt 1. The necessity is evident; the sufficiency follows

from Theorem 14.12, part l. Q
Part 2. Same as part 1 together with the fact that the\}ﬂelation
[ O
el ® = Z “fi” of Theorem 14.11 may be gensralized 50 as J¥o assume the

& T

form(f,g):%(f&,gd\)(f Zf,g=z,€&",f e M, sx € M)

(The real part of this latter relstion results from the former by replacing
£+ F :'\\:
L oy —-2-5- and %g; in suceceszion and taking the difference bhetween the two

reaults; the imaginery part results by repiaéing f and g respechively by f
o

“ *

and ig. ) ™Y

Part 3, Since A" s reducéci:i)y the sets Md(Theoraﬂ 14.4,part 8),
it is possibls to form the ‘op\éfa}ors (A*)a\ o As A and A are partial adjoints,
the same is true (by pari :2) of A, and (_A*)a « Hence (A*)c& < (Ad\)*. Let
A" be the operator S".\éltz.'\tima'b Al = (A. J*. Then 4 and Al are partial ad-
Joints, =so that Q\e same is true of A and A'. Hence A' < A*, and (ﬂd}
AL S A, (by part 1}, Therefore (A, Jx = (4 )
P&;"é 4. Tt musb first be shown that the condition 4f = 0 is equi-
But the necessity is

valent to the cendition .B.d fc{ = 0 for every HAE dJa

. =1 .
evident and the sufficienmcy Pollows from part l. Sines A — is reduced by the

-1
sets M_ (Theorem 14.4, part 4), it is possible to form the operator (A ")y

- -1
It is evident that (A7), = (4,)7
Part 5. The assertion with regard to Kl(Hemitian} follows from
) frem part 3; with regard to Ks(unitary)from

=1
r a unitary operator, 4 © = A

part 2; with regard to K (s.s.

parts 3 and 4 together with the fact that, fo
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(Remark 3 following Theorem 14,1); with regard to K4 (projesticas), the
assertion could sasily be verified directly, hut as a mattor of fact it ig
contained in the assertions regarding Kl and KG since A& is a projection if
and only if 2A - 1 is Hermitian and unitary (ses the discussion at the end
of the section dealing with unitary operators); with rogurd to KL), {semi-de

finite), the necessity is evident and the sufficiency foll 7'.‘J.-“-.‘"})*om the re-
¢ N s
lation (f, g) = Z (£, s g, ) {derived above) since t'ni;:\':‘c-,]\_;;.'t,ion implies

\ @

the relation (Af, f) = Z (4 £, ); with rpgard.m K, (dufinito), the

uo\’

asssrtion follows from this seme relation or i‘rom\K’ and part 4.

Part 8, It is evident that, if A 1s\bmmdnd then cach A is also

bounded; 11:1_ fact, i a “I = HJ'AH] since eaeh\A iz & contraction of A, Thus
the condition is necessary, and HIAU 5 J:u b A [l. Conversely, suppose
that each A is bounded and that d:h'e numbers ”IA f” A€ J,are hounded.

tet ¢ = 1oz Mlad . The'l ”A gl Scllghror e . 17 in the re-

. Z 2
lation “f” Z”f” ‘t}w" element £ is replaced bJ Af and f‘ is replaced
T 2 2
by A L, , the resul,f;“;s that flarl| = > lag sl menco Nag )| ® 5 0% el
aJlael] Dy e :
and Jaef] = C- £l thet is, 4 15 bounded and Mall S . Thus the condition
:"\$¢
s Sufflcie\;\\s\ahd m‘&m gigg- it & f” « This jcompletes the proof.
L@}t B be an operator in 3; .(/3 is taken to be that operator in 8 X8
defﬁ\%d by the condition %(f g = <Bf', Bg>. (It is appursnt that

<f’ 8 € D ?3') if snd only if £ e D{B) and g € D{B),)} In ihe notation of

Appendix 11, '8 is represented by the matrix g 0 . If B30 =20, a gtraight~
B
forward 5 * . i
B* computation shows that ﬁ 1s similarly repres=nted by the matrix
0
l o §-

Assumo that B ig S«¥e with D{B) = 8. The fact thet a s.v. operador
" . ;
eommutes with B means that if 1 e D(4) then BF € D(A) and that ABf = BAF,

that §
15, <Bf; BAf> & G(.&), or again, if <f’, g) [ G(A) +hen <Bf, Bg) [ G(ﬂ.)!
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or again, if p € G(;i) then 53 ¥ € G(a).

Let L£A = PG(A)' The preseding condition states that %A ﬁﬂf = 93'-?
for all € ¢(a), that is, for all ¢ = 533//’0 This means that
33@ %Lﬁ//‘“ .@tg&%for all ¥, or again, gﬂfj Lgﬁ = 4{9{8&. This leads to

TEROR®M 14.14. If A and B are s.7. with D(B) = S, then A commubes

with B when and only when gﬁ 763?;& = (/}EA; if, furthermors, B{B) = D(B*) = 5,
N

then A c.a, with B when and only when Lé_&@= @gg .

N

AN
Proof: The first assertion has just been proved. Tby jtﬁrplies that
in *h \ s . . . < .,':,‘ ~ % - *
e second sgsertion the relations %A@%A 9}%11 a}l(i :%A 53 LgA f@’ ZA
. ¢ &
constitute a necessary and sufficient condition. Aa“’?gA and @ are bounded
and everywhere defined ( @' hus these propertiggibecause B nas them} it is
. * ..' v
pessible to apply the opsration to the sqsgnd relation and obtain the re-
sult EA@E’A - &, 5’(} . The firet and 34st relations bogether imply that
%A f‘? = @%A . (onversaly, this vi"éfl:;\tion implie s the two just mentionsds
&850 0 80
N ALK Byt - Ao
xt\u'
:“\.‘.
Remrk(éptwshould be noted that, in the second prt of the preceding
theorem, %) and ﬁ are both bounded and everywhere defined, Hence the con-

N
dition §A‘5§ = ?}%A means that @ commutas with %A and therefors that ﬁ’

C.a. wit -
a Mhlg.&

By using the matrix notation of Appendix T it is possible to replace

A A
b by its matrix 11 T8 Tt ig evident that ﬁ commutes (c.a,) with
A App e :

A A

19 A21’ 29 This provides

when and only when B commubes (coas) with &y,

9\

a crikterion in S that 4 and B C.d.
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Appendix ITT.
A familiar way Lo "arithmetize" operators is to replace them by ma-
rives. However, to do this in the general cuse (as when the operatars ﬂ’
are linear, closed, 8.¥., With domains dense in & Hilbert gpace 3) it is
necsssary to use a certain amount of caution. The purpese of this appendix
is to carry out this replacement, I\
The following theorem is useful to this end: L\

N
THEOREM 147,12, Ir M is a separable l.m., then thfaf’& exists in M a

<

E__El}_‘t_ggigo_wlm 01 set Ar ¢, Mos +e. such that EAI c Mc [4].

Remark. M need not be closed. TP the Operatlon [+..] is applied to
the relation [A} < M [4], +hen [A] = [w] =\closu.r‘e of M. 1In tre cuse where
M =25 (8 being separahle), this result dea:gis:}to Theorem 12,13,

Proof: Let f‘l, f2, «»s be e'..'é:;éézlence of elements of M whizh iz denss
in M. This Sequence is also denser"::}n' [M] = closure of M. Ths method of
proof of Theorem 12.18 carrles\over to the space (4] (since M is a ¢.lom. )
when applied to the seque,nx fl, f‘a, ¢vs « The get \Fl’ tpz, «+» 50 obtained
satisfies the requl“emam’ts of the theorem.

It is des:h%a'.ble to consider Successively the threo essent: ially dis-
tinect pOSSlb]‘ll%_eS With regard to the dimension N of g space § {compare
Definitigm’ lc! 17) JL may be finite (n=%= 0,1, 2, ...}, countably in-
finite {( f} = w ), or uncountably infinite (N = w ) correspondingly § will
be an N-dimensional Euclidean space, g Hilbert space, or a hyper-Hilbert
space,

Case 1, fl=§ = 0, 1,2, ...; 3 an N-dimensional Fuclidean space.

Lot # be a linear, s.v. operator with D(#} dense in 5. (in the other

tWo cases it will be necessary to agssums clogurs also, but at present this is

unnecessary.) By Theorem 141,31 there exists an o,n, set Ar Yo, aun, ‘PL in
LY
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D{g) which is dense in () and hence nlso denss ian $; it follows that A is

complets in 8§, L = N, and every element oiff § is of the fomi d_P ‘¥, that
p=1

is, § ={A1. 8inco # is linear, D(#) = 8. Thus f is defined over the whole

of 8, snd 4 may be taken as any complete 0.1, set.

) il
Le't-,{‘fl=Za so that a =(ﬂnp, ). Iff!-ZoL
AT L L oA
and @ = ¥ s then y = a__ o+ Furthermore,
2, Ve MO e
N ] .\:\’
. Je
he? =S 1 i?, Ii:a’fﬁz=ifZa:C;m| :
J:=l F : g =1 PZ;L”?’«P f
N O
(gr, £} = Zl %00 % SEC;‘\
Pz ) X 2
\\“ 0'Z=li % avpc'&yl
It is evident that the renge of values of ,Hg—ﬂ = ﬁP 5 is
O > 1l
P

N3
o\

bounded sinee N is finite and cons“‘;{aﬁ*:. By Definition 13.1§ the operator o]
S . *
is bounded; since D(ﬁf) = 3, ‘d\ﬁs eclsgsed, By Theorem 13,21 or 13.33, ,d ax-

ists ana has the same chai@ﬁ'ér as ﬁ; if a_;m': (ﬁ* "P-P:‘fo. j, then a}o_=

* (“f’_ps ,6?0.) = &O_ﬁ,\”:;‘l‘hese results are summarized in

THEOKE 140, 10 4 is linear, s.v., with D(g) deuse in S, then f is

R
\/ * .
gverywhars de,f\‘ﬁkd_, bounded, and closed; ﬁ exists and has the same properties.

_Ii}*'is_ & complote o.n. S8t Pis arvs H‘-’N’ form the representations

J] LF‘F =\f a_PO' ¥ 5O that aPO' = (g T;O, for )« Then the mabrix ”a'po-“ is said

%o belong to the operator g for the set & = ("Pl, sers ‘f’N)-

In the sams semse, the matriz I a}cu , where a;w= % will belong
to £ for the sov & = (Hfys «oe Byl
N N K
xe- Zl XJ-,‘I}, and fr = ogl Yo'fe then ¥, = _FEL &_PO' G\P'
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This theorem (proved above ) leads directly to Ly pro) lowing

Gorollary: Since D(#) = § and sinco g" 8 502 (Thevrum i5.14), the

condition ﬁfc::j?.fq= implies the condition ﬁ = ,Ef ,» that is, ir Jul in Eormitian

p +
it d iy € 'L}( cotdidion ¢ - ﬁ’), is equi-
then it is s.a. {Theorem 18.16). Furthermore, th condition § is eq
ok

= i 1 lermiaen 408 ) , That
valent to a ‘oo a.j;m for 411 Ps & (since aPc_(aPG_) Geteemiong Ag )
3 = . ."\
iiafo'- ac'_p

Case 2. J1 = “; 3 a Hilbert space, ,\"\'

Let f bo o linear, closed, s,.7, cperator w1‘b foj) v i 8. By
Theorem 147, there sxists an T, Set A ‘fl Lfa \\.. in D(@) wiich is com-

Plete in 8. et ﬁf be the contraction of B ovde X, tiat iy, D[ ’dl = A, ﬁlc ﬁ'

%

Since A is complete in 8 it is possible tan}roducc the ropronentation
= (# . Bince
ﬁf qu “po Wo s Where o CSNE AR CAR I

pf ,Ef and ginee ﬁ is linear ang crosed it follows that ﬁ < 4.

THBOQEM 14’ e 4 s dornge ] S,
___________3- If ﬁ lS linear, closed i'-‘i" f_l_',‘.i D\.O) Lonse in

then there exigty An o.n, §E't\A- ‘fl, Fao
\\
8nd such that ﬁ: = ﬁf where ﬁf

Remark: Ir D@Eﬁ’

»eo 10 D{@) whioh is complete in 8
is the contraction of & over 4,
T 2200 of B ogver

S and if f i4 bounded (so that B is continuous

N
over §), then ﬁf e continyous over I ﬁ ) sincs E C #., Hence b(,ﬁf ) is a

N/

a coms
¢.l.m, {Thecrx’em 13.11),  But D(Bl) > D(gf ) = A so that D(Q } 2[Aa] = §. Henoe

D()@’l) —»Snahd ﬁ = g, Under thege conditiong every complete o.n. set A satis-

fies the conditiong of the theoren, It will pe shown in » luter chapter that

in 211 other cases not BVery complete o.n. get in D(#) sutisfies the condi-

tiong of the theorem,

Proof: Since 8 is Separabls, § x g and 6(6) c § X § are also separables

Hence there ®x1sts & sequence (f‘

fdfl>:<f2, ﬂ’I‘a), +v. dense in G(g). If
n s p/f >) \f ,df'n?

sea iz g EUbSequence of thisg sequence with 1imit
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* : ) *

(£, £7>, then, since § is olosed, {f, £>& (), that is, £ & D(F) and g = £*
Ir ,@' is the contraction of @ sver the set Bs £, For weey then’ff =g,

It is evident that the set B is dense in D ﬂ’) and 8. Lebt A be the
oen, set f1s Pys -». arising from M = {f‘l, f‘z, +.+} = {B} according to the
constructions of Theorems 12.18 and 14',1. Since 14} = {Bl , it follows thet
ﬁl - ﬁo, B,=8_ =g; and [A] = [B] = S. Hence A satisfies the conditions of

N
the theorem. N
.Y
Definition 14'.1. A complete o.n. set A: Yo Pos ..;\'Vu‘h‘ich subisfies

the sonditions of the preseding theorom will be cal]ed;iﬁ’d&termining set for ,d.

'\’\‘ jas]
Since 4 is complets, the relations g ']D_P: ﬁl q&P = ;l aPO_ Py and
aPo_ (ﬁf _P \.FG_) = [{d \.Po_) noted above s\t,ﬂ\' obtain., The matrix ”a.Po_"

is said to belong to the operator B for th.er,& = ('f‘l, Py vv+)e (Thess a's
ars closgely analogous to the a's used 3:11 Case 1.)

By Theorem 12.16, Z]a c_jz E f(ﬁn{i S, )= li,d-.p I is finite.

) o =1
It iz evident thatb D(ﬁ )— {D(ﬁ Jt = {4}, that is, D(ﬁ ) is the set of
n \
a1l a2lements f = Z xP\p W Where n is any positive integer. If g - ﬁ’lf =
B i £y S £ S
th t\ ,é x a " (> a _x s
Z yo—“fo-' en gi Z "PP % Co, P00 En o PP for

n\'\\

and
e T le\? 5

Ji\li;ﬂauch it iz not possiblo to give a direct characterization of
D(E1) = D(@) (excopt by directly tramslsting Definition 13.10 and the dis-
*
cussion following it), something can bo said in the event that A = (g,
i 2.8, (B, ¢ )=(2, £ )
o, & . is defimed for all w_ in & Yy Theorem 12.8, (4, (fg; £ B e,

i3 & continuous function of £ over D(f). Hence if f¢& D(f), £ = Z]_ xPLf»P .
P:
® ) ‘
g o= Z Y5 Py + Phomy = (gr, L.‘Go__) is a continuous function of f. Let
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(), ¢ () . 5> (n) e L (a)
= , B = N $ then £ = 1im f s ¥ o= lim oy =
% K'P LP-P U‘Z—*-l T ‘700" D=0 newm 0

n @

= lim >

a _=x = a x ,
D=0 j)=1 Fo P p=l PTp

C1

m
In this discussion it was proved incidentally that Z apcr xJD is con-
p=1
vergent, However, if f = Z XP kPP is an arbitrary el>ment of 3, Lhis series
p=1
is even absolutely convergent, the reason being that N
2 AS)) 2
L ool 2 e )P 5 g, 0 i)
? =
o) s 5 ) 5 o AN °
and Z” x ” = Hf” s 80 that Z [ a cr] and Z[x .jﬁ\dra botk f'inite, whils
P-—..-l P P:l _P P:-.]_ P.:
1 2 L3 2 \J
J&Po_xﬁl Ala o_l + é!x <. '\x\\
Def'inition li'_.:. iy £, A: “fli “P ees and aP (ﬁ s WP ) are es
above with 4 < D(E’ ), fhen let P = z WX \P range through 8 aud form the
ot p—"= R
expressions Y Z &PE" xP. Le:t: )‘.5 be t}\ut operator whose domain D(ﬂ ) is
o =1 ~
the et of ell elements f sucl\that Z]y ] is finite and which is defined

@
by the condition ,@' f = F"\\y o Por f £ D(ﬁ‘f ).
o5

It follows f‘r:c)m:the preceding discussion that g < ,d, .

it is posub{e to characterize ,E‘f completely in terms of 0. Since
A CD(,d T, ity l\S pessible to define ﬁ &3 the contraction of ,Ef over A, The
coadltlmfa D(g"' V¥ ana £*. g’ 3 together mean that (£, g ) = (f7, g)

for all elements g in D(ﬂ/* ) = A, i.e., for all elements g = 'Tso_ . Let

£ =J§ x-?lf f‘ = le chtfc_so that (f*, LFO") =z and (f, p’*'Lfo_) =

“(f:.d )”m, ,* a_-.m _Coax=
Yo }g(f ‘PP)(‘?P # o) Jogl (£, \fP)(ﬁlfP, Lfd“)“’():zl po T p

* Vone dence YT 2g + Since the nurbers Z4- 8re arbifrary exsept for the
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oo jov]
2
condition that Iz | ve finite, 1t follows that £™= >y _w _, where
0o o c=1 7 . o1 &7
ijcj is finite, i.s., that (g ) = ﬁ'q.
o =1 -

Inasmuch as ﬁ)'*'c ﬂ*, (ﬁ*r)*g ,Ef" and ﬁfg > f (Theorem 13.13 and the
romark preceding it}. But ﬁﬁ2= (ﬁfﬂ)*“ (?)* {ef. l.c.), so that the con-
dition ’62: # is equivelent to the condition (BTI) ;zf‘ (@ is linear and

closed so that ,6 = ﬁ** (Theorem 13.13)); as :é(* and ﬁj are both 11near\and elased,
sach of these conditions is equivalent to the condition ’F = *\' \'But this is

obviously equivelent to the statement that the complete O.I’l{.”&,Et A {assumed coun-

* £
teined in D(# )) is & determining set for g . These rgsbits are summarized in

THEOREM 14',4, (i) Let @ bo linesr, closeg,~s.v., with D{g) dense

in 8; let A: ‘-fl, “f.» «+» bo 8 complete o.n. sct~~3ﬁ9{:'ermining B; let ff be the

sontraction of B over A D{Q) introduce the Tepreuentatlon # \f}) ﬂl _P

=Zl ‘Pc_uro__,.,oth&‘bp ~(,55\P \Fo. (ﬁi‘l»f’ ‘¥ ). Then
(1) i]ayd =i‘ﬁf~fp” Ef},n}fﬂe

.\\“ L jon)
(2)  D(g)) o the sot of dlb clemonts £ =3 x, s mnd f =Bz = 3 v g
o AN =1 o =1

(3) While ;5 f‘ﬁ;,\ the enly way to charscterize it is to apply to it Defi-
——— il J_. \$ —— E——— i —— A e ——— Tl — ——_—

niti rr‘i?é\;lO and the discussion fullowing this definition.
oo 2 KA

&
(i1) However, if A< D(F") (£ is linesr, closed, s.v., with D(4")

ilf’_ﬂ_ﬁi in 8; sec Theorem 13.23), then
2 .-
(1!) Z]a =Hﬁ* kffcﬂ i_s_i_'_l_nlte.

(21) Let 5}( be the comtraction of ﬁf* over AC D(ﬁf ) and let ff be the

operator introduced in Definition 14'.2. Then ;Efz = (ﬂ,‘ ) . implying

that ﬁjc jd ; these conditions in turn imply that ,€52 is linear, closed,
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B.¥., with D(ﬁz) dense in 3.

T
(3] The conditions @ = ,Efn sand § = ﬁfﬂ sre equivalent with ea.ch_ ofher, and

—

This theorem (proved above) lesds directly to

'y
Corollary 1, If D(,ﬂ’) = 3, then both ﬁ,’f end ,Ef are everywhero flei’ined_

and bounded (Theorems 1%.22 end 1%.21). Hence every set 4 is, d\lete‘:rn:ir;ing

set for both ,d and ﬁf In this cage Part 27 of the precc ﬁ theorem charac-

terizes ﬁf (,d ), and is even smpllfled by the fact that D ,{’5) = 3.

Corollary 2. Since g = /5 ﬁfﬂ (Tbeorems&' $ and 12.13), it fol-

flonce, for a1l p. o, (B¢, = G ﬂi“f‘ ), that i, fpo ™ B ot
Un:-"or'ttmately, no comparably s.mple eritericr is known for the Lroper-
R

lows by Theorem 12.18 that ﬂ is Hermitian when aod onl} wher }':f] is Ecrmitian,

‘ > 3

ty of being sz.a. «\

N

Corellary 3, i is ﬁe’ﬁitian then g Cﬁ*

L
[+

g0 that 4 < D(g) < D(d").

Hence the assunption in (nJ\f the precealng, theoren is satisfied. Since

i \ oratore f o rgrin
fél = ff it is ev:Lue\nt Lhat ﬁ = ﬁ Therefors .9, (ﬁ i -’6;( B /éﬁ
The condition ,@,C ﬁ ﬁn 2' assunes the well knov‘n form ,dC ,d,‘:; if ﬁ = ﬁ » then
/ﬁ pﬂﬂv al‘ld ﬁ g\g Hence, g_é“ A .j;"cl?‘_ determining set for ﬁ* if and only
o\ T T
i P s saa)
N

\”ﬂ; is possitle to follow the procedure inverse to that outlined sbove:

start with g complete o.n. sot 4.

F1s for ove 8nd a matrix J”aPG,H and con=

struct the operators g, ff*, ﬁ . ;jj’ .

L]

THEOREM j4! '.E.01) Let 4 be a ocomplete o, . set P19 Pys «oe and let

—_—

There 2 line '
= erl_sj_sl._i linear, chr.JP(I BV

operator g, with D(g) dense in s, to whlch “&

j belcnés for A (Defmr’ltloﬂ

T ——" ek serve5 Z . is finite, ang in this event
a-= 1

}D’ is unigue.
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. * o0
2) The condition A< D{(f ) obtains if and only if svery series Zfa 612 is

_P=1

finite.

Proaf of 1): The necessity of the finitemess of every seriss Zl 2

d‘
o =1 P
follews from Theorem 14'.4, 1); the uniquenezs of ﬁ (if it exists at all)} fol-
lows from the uniquensss of 'd1 Theorem 14'.4, 2) and the fact that ﬁf = ﬁ‘.

oo .
£s to the sufficiency of the condition that every serles Z | & T]’a\be finite:

o~ =1 8]
it is possible to define an operator P over A by the condition\i’\f— ¥
3 e Ty te
and to lat ﬁf = P, It is evident that A < D{4), ,d = P, a.nd ,Ef ,dj, so that
4 is a determining set for @; furthermore,
g ﬂ'wp ?9\21
Proof of 2): The necessity of the finitP\ness of every series Z!aPc_
N p=1
follows from Theorem 14'.4,1'): to show this.c\sﬁaition sufficient, let
- Zm Then (f o) ¢ '), so that o{g ")
f,. = > aPc_LPP. hen ( 1'1},\-? ) a}] {tf_P o J» SO that vy ¢ L )3
£

* ik * A
but 6= B = 4. ) N\

The theory of operators\\&s originally formulsted by Hilbert and as
developed until recent tlmé\} was usually besed on matric representation in a
fized orthogonal systgmg This method is quite convenient for operators which
are defined everzs?égg"and bounded. {Most of Hilbsrt's theory wae restricted
to operators qﬁf?ﬁgg type.) But it is evident thut for umbounded operators
the descripéggﬁ becomes rather involved. It will be seen in labter chapters
that s number of characteristically "pathological™ results may be obtained for
unbounded operators (which represent the "general case"). The complicated and
Mpathologioal® behavior of matrices representing unhounded epsrators is a
strong argument in favor of the present sbstract method, OFf course this doss
not lessgen the importsnce of learning as much as possibls about the behavior
of matrices of operators.

It should be emphasized that the conditions prevailing in Case 1
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(finite dimensional Fuclidean spaces) as described by Theorsm 14'.% may be

congidered as hiphly simplified and special cases of those conditions in
Case 2 (Hilberw space ), the chiel elemsnt of this simplification being that
in Cage 1 every linear manifold is closed and every linear operator is closed
and bourded.
Base 8. N >0 ; S & hyper-Hilbert space. QO
Let @ te a linear, closed, s.v. operateor with D(ﬁ} aé;&é in 8 (com-
pare Theorem 13.23)), By application of Theorsm 14. lO.&nd the remark {'ol lows
ing 1t, there is obtained & set J of indices o and\fbr each o £ J a Hilbert
space X such that 1) if & # A | then M and Byvare orthogonal, 2)

N
leees M, , .. ] = 8, where « ranges throuéP\J, ané 3) each ¥ reduces 4.

v

8ince the dimension of ¥ is %gand gince [,.., Hos --el =38, it

follews that (power of J) s o = Jl,f};ﬁé {L is non-courtably infinite, the
power of J must be infinite. ggngé {power of J)e co = (pewer of J)}, so that
the powsr of J is S\ ., Thufjg;}s non-countably infinite, (In Case 2, where
JL o= w0, it would be pdssible for the power of J to be urity, }

By Theorems\34sll and 14.12, the operator ﬁ is cempletely churacter-
ized ir 8 by 1ts\pehav101 in ench spuce H s that is, by its contractions ﬂ&
cver M . D{ﬁ}’(d ranging through J), But the operateors ﬁa are in the Filbert
gspaces H%;; 80 that the results obtained in Case 2 are applicable to them.
By making this an pplication it is found that the behavior of ﬁ in Case 3 ia
quite analogous to thet in Casa 2, The precise formulstion of tre situation
ie as follcwss

Let T be & set (or indices) of power L which can be used to lsbel
the complete o.r. sete of 5. (8 is homeomorphic +u the apace HI; compars Defi-
nition 12.36 and Theorems 1%.26 and 12.27.) Tt will be agsumed for the moment



Appenix III. 105

that T is non-countably infinite (characteristic of Cuse 3), but it will be
seen later that this sssumption is unnecessary .
THECREM 147.8, Eﬁ_}j & linear, closed, s.v. opsrator with D(#) dense

in 8, then there exists mn o.xn, set Az v, & & I, in D() which is complete

in § and such that ﬁl = (@, where ;Zfl iz the contruction of § cver 4.

Remark: Exactly the same remark (with ezactly the same pr’;}f;l can be
AN

-

Pron': Let My s %€ J, be the Hilbert spaces QI"}Qheorem 14.10 as

mede here as following Theorem 14!'.3.

described sbove; let be tha contructions of over{}if’-D T s application
o o M e

of Theorem 14'.Z to ﬁ‘f in M

» . » there exists an o B set A T 1,\})0{\ g eee
¢ > 3

$
ir D(@, ) which is complete in M and which.js)e determining set for g .

The entire set A: k‘Po( ! g X E J n’— 1, 2, ..., is o.n.; but
[4] > [a,1= L Ao, M L 3 .a:-} = B, B0 thet A is complete in S, BSince

3

A < D{f,) <D(g), it follows that 4 cp(d). Let g, be the contraction of £

\
over A°D{f), and let ,@( b {ha conbracticn of ﬂf over A ¢ n(g,) DA} =

= 4. D(ﬁf J. Then (,Ef ) :) (:ﬂ' )1, and hence (Bl; D(kf ) = (since A cx\is g de-
termining set for ﬁok By Theorem 14,1%,1}, it follows that ﬁ o #; tut it is
obviocus that ’dlf_\g"" g0 that g‘(l = ;a’ Therefore, to complete the proof of the

thecrem it nt{t;ﬁins merely to change the labeling from A: \]Jd 0’ A&,
L 3 >

40 \ Y
no=l, 2&.’.., into As P2 K E T

Definition 147.3. 4 complete o.n, set A:x de.,’ o £ I, which g=stisfies

the conditions of the preceding theorem will be callsd a Cetermining set forf.

Jince 4 is complete, it is again possible to introduce the represen-

tations;ﬁ'tpw:;ffl*-ﬁUR Zaﬂ/ﬁuﬂﬁ OQEI,/H& I, so that aﬂ\:/a:(,ef'-f#\?ﬁ):

= (’dl \'Fok’ “ﬁa J. The matrix | Il is said to belong to the opsrator @ for the

set A = (..., *fq s ean)s
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THEOREM 14',7, (1) Let # be linear, closed, s.v., with D(#) denge in

83 let Az , A &I, be a complete o.n. set determining g Iet ﬁ5 bs the

contraction of & over & < D(#); introduce the representation @ Yo = )?5 Yo =

%aet/a Fae FETL A EL sothat e , =y, = (8} ¥,*¥4)- Then
1) Z [a fz =gy ”2 is finite (3o that, for any particular A,
Aer A ¢ = - s e

a.d/f 0 for all /5*3 sxcept for at most & countable set whi c}i\depe_x?d_s
on = }, ()
—_ ™\

2) D(ﬁf )] is the set of all elements f =d\; X P s wh’er?é L Is any finite

subset of I, and ,Eif’ = jfi’ = Z ¥, with y .
e s R AX% “p
3)  While ﬁl = ,6, the only way to characterize _1{:_ i5 to appl ¥ lo iv Definition
9.\

13.10 and the discussion following thig dR{“Jnltlon.

. ] . * o
(ii) However, if 4 < D(ﬁ*) (g 3_5_ lninear, olosed, s.v., with L(g )

" <

dense in 8; see Theorem 13.23), then ~

2 % 2
17} d-ZEI Iaq/;] = |Ig T’/.J“ is..f‘in’ite (so that, for any purticular 4,
BT 0 for 2ll o('s excep’c for at most a countuble set which depends
pT ot 2 set
on /,'1 Yo ..

ar). Lst ﬂ" be the cou‘tractlon of ,E)' over A ¢ D(ﬁ ) and let ;1‘ be the opera-
T?‘-—ﬂ——-_ 1

tor defined ;}ollowm let p = L Xy ‘i Fonge through § wnd form the
g
axlgresalon y Z & X {(these Sums are all absolutel bomt’ré"”n{’)
A7 ey upn these ~=~
Then, D”‘(ﬁ ) Is the 35t of 11 elements ¢ such that > | is finite and,

¥,
T ART /b - t %
forf&D(,d) )‘éf is faken to be Z '

fo be Vy'¥p e It follows thet f, = % )
prr P —
M}E&E}Eﬁcﬁn ; these conditions in turn imply tuat ja is linear ,

closed, 5.7., with D(ff ) dense in 8.

1
8') Ihe cornditions g4 :3;{2 and ff = ﬁ* are squivalent, so tlut 4 is a deter-

mining set for ,d’
Romark concerning 2'). 1r 3 JX@JE is finite, x_ = O for all except
(=N

A ET

et most a countable set, and for any particular w in this set, n = 0 for
=
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all /4 except for at most a countable set., Henge if y Z
n oLET
most countable set of y's is distinet from 0. Thus the condition that

a x an at
A

N 2 . .
Z Iij bo finite is not quite as strong as it might seen.

A3ET
Proof': Exactly the same as for Theorem 14'.4, where the set (1, 2,...]

is always replaced by the set I, and where the sets (1, ..., n) are replaced

by finite subsets L of I. N
N
Corollaries 1-2. Exactly the same as for Theorem 14}'}4.,\ with ezactly

Ny

the same proof. N

7
 {

THEORFM 14'.8. 1) Let A be a complete o.n, Set\\'gd\ . & &1, and let

adﬂ“ be & matrix (of complex mumbers) with cj\E T, pB&I. There exists a

$
linear, closed, 8.7v. operator g, with D{g), dénse in 8, to which a belongs

"

for A (Definition 14'.3) if and only i_i".;aire}y series Z o;/b is finite, and

AgT
in this event @ is unique. '
2) The condition A © D(ﬂ ) Obt&lﬂs 1f‘ and only if every series Z Ja is
KA ﬁ'
finite, + )

&
Proof: Exactly the seme as for Theorem 14'5, where the set (1,2,...)

is always replaced.hz:%h;e set I.

By .compigi:\\:i::}g the results of Cases 2 and 3 it is seen that they are
identical whf:f:;’} in Case &, I is countable and unessentially specialized to
I= (4, ‘R‘,\'..)). In fact, the results of Case 2 follow directly from Case 3:
the non-countability of J was not utilized, and Case 2 arises by taking J = (1)
with M1 = J. C(mse 1 ariges for a finite I, and its conditions, described by
Theorem 14'.2, mlso satisfy the thecrems in Case 3 of which they are extremely
gimplified special cases {see the discussion at the end of Case 2).

In brief, the results of Case & apply to any S end any I. However, if
S is N-dimensionsl Buclidean (I finite, Case 1), thene ssentially more is known

{of. Theorem 14.2 and the discussion at the end of Case 2).
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